A = \(\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix}\)
Reduce to row echelon form:
\(\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & 8 & 5 \\ 5 & 4 & -2 & -3 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & 8 & 5 \\ 0 & -6 & -17 & -23 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & 8 & 5 \\ 0 & 0 & -5 & -2 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & 8 & 5 \\ 0 & 0 & 0 & 14/3 \end{bmatrix}\)
Since the matrix contains no rows of all zeros, the matrix has a rank equal to the number of rows, which is 4.
B = \(\begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix}\)
Reduce to row echelon form:
\(\begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 2 & 4 & 2 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\)
Two rows are all zeros, so only 1 row is counted for the rank.
A = \(\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}\)
\(\begin{bmatrix} 1-\lambda & 2 & 3 \\ 0 & 4-\lambda & 5 \\ 0 & 0 & 6-\lambda \end{bmatrix}\)
(1 - \(\lambda\))(4 - \(\lambda\))(6 - \(\lambda\)) = 0
(4 - \(\lambda\) - \(\lambda\) + \(\lambda^2\))(6 - \(\lambda\)) = 0
24 - 6\(\lambda\) - 6\(\lambda\) + 6\(\lambda^2\) - 4\(\lambda\) + \(\lambda^2\) +\(\lambda^2\) - \(\lambda^3\) = 0
-\(\lambda^3\) + 8\(\lambda^2\) - 16\(\lambda\) + 24 = 0
We already know the factored version of the characteristic polynomial, so we will solve for the values of lambda.
(1 - \(\lambda\))(4 - \(\lambda\))(6 - \(\lambda\)) = 0
\(\lambda\) = 1, 4, and 6
To find the eigenvectors, each eigenvalue must be used in the matrix.
First, we will use \(\lambda\) = 1.
\(\begin{bmatrix} 1-1 & 2 & 3 \\ 0 & 4-1 & 5 \\ 0 & 0 & 6-1 \end{bmatrix}\)
\(\begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{bmatrix}\)
We can row reduce this matrix.
\(\begin{bmatrix} 0 & 1 & 3/2 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{bmatrix}\)
\(\begin{bmatrix} 0 & 1 & 3/2 \\ 0 & 0 & 1/2 \\ 0 & 0 & 5 \end{bmatrix}\)
\(\begin{bmatrix} 0 & 1 & 3/2 \\ 0 & 0 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\)
Set up the equation to solve for x, y, and z.
\(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\) * \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\) = \(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)
x = t
y = 0
z = 0
Eigenvector = \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\)
Next, we will use \(\lambda\) = 4.
\(\begin{bmatrix} 1-4 & 2 & 3 \\ 0 & 4-4 & 5 \\ 0 & 0 & 6-4 \end{bmatrix}\)
\(\begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{bmatrix}\)
\(\begin{bmatrix} 1 & -2/3 & -1 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{bmatrix}\)
\(\begin{bmatrix} 1 & -2/3 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}\)
\(\begin{bmatrix} 1 & -2/3 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\)
Set up the equation to solve for x, y, and z.
\(\begin{bmatrix} 1 & -2/3 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\) * \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\) = \(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)
x - 2/3y - z = 0
z = 0
x - 2/3y = 0
x = 2/3y
Eigenvector = \(\begin{pmatrix} 2/3 \\ 1 \\ 0 \end{pmatrix}\)
Lastly, we will use \(\lambda\) = 6.
\(\begin{bmatrix} 1-6 & 2 & 3 \\ 0 & 4-6 & 5 \\ 0 & 0 & 6-6 \end{bmatrix}\)
\(\begin{bmatrix} -5 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 1 & -2/5 & -3/5 \\ 0 & 1 & -5/2 \\ 0 & 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 0 & -8/5 \\ 0 & 1 & -5/2 \\ 0 & 0 & 0 \end{bmatrix}\)
Set up the equation to solve for x, y, and z.
\(\begin{bmatrix} 1 & 0 & -8/5 \\ 0 & 1 & -5/2 \\ 0 & 0 & 0 \end{bmatrix}\) * \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\) = \(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)
x - 8/5z = 0
y - 5/2z = 0
z = t
x = 8/5t
y = 5/2t
Eigenvector = \(\begin{pmatrix} 8/5 \\ 5/2 \\ 1 \end{pmatrix}\)