Markdown Author: Jessie Bell
Still in progress of writing and formatting
Figure 1: (1) Showing flagellated stage for H. minor (Parke and Hartog-Adams 1965), and (2) Immature phycomate (3) Formation of rosettes that will become motile flagellates, (4) Intermediate stage of Halosphaera sp. in Bellingham Bay, Bellingham, Washington. Collections for b-d were taken in January & February 2023 using dissection scope in the Kodner lab, cysts are about 120-310 µm.
Figure 2: Previous sample sites from our pilot study January - March, 2023 taken at multiple locations within the Salish Sea. Dr. Kodner and I took two trips on the R.V. Magister; on February 2nd and March 8th. The February 2nd trip traveled to sites 2-4, the March 8th trip only traveled to site 3, a surface tow was also collected at Taylor Dock and aboard the Magister. The Taylor Dock sample had only 3 cells and the R.V. Magister sample had 15 cells. (1) Bellingham Bay, (2) Burrow’s Bay, (3) Smith Island, (4) Strait of Juan de Fuca 001.Created in ArcGIS Pro 2.8.
Figure 3: (A) Number of cells counted per tow shown as dependent on time. Day 1 began on January 13th, 2023, samples were not collected every day during this study. The plum-colored vertical lines show when the new moon occurred, and the blue vertical line shows when the full moon occurred. The sample with 55 cells was collected 4 days before the full moon. There was only one full moon event during this last sampling season. (B) Shows that on average there were more cells collected during high tide. (C) shows that it is quite difficult to depict patterns that might be happening with the lunar cycle. Proportion of total cells collected were used to not give weight to which times were sampled more often.
I believe that it is more likely that abiotic factors have direct influence on the Halosphaera bloom dynamics – which was not considered in my preliminary work nor previous research. The abiotic factors I intend to measure include water temperature, pH, conductivity, nitrate and chlorophyll concentrations, tidal variation, wind speed, precipitation events, windspeed, and wind direction. My study will help us resolve the story of this marine prasinophyte given modern climatic conditions here in the Pacific Northwest. I propose to collect both spatial and temporal data on Halosphaera, which will allow me to address questions about their ecology in a way that has not been done before within the Salish Sea. Based on my observations from last winter, Dr. Kodner’s observations over the last decade, and Maurice Dube’s observations in the 1980s, the following objectives will drive my graduate thesis:
Determine possible abiotic factors influencing the abundance and morphological characteristics of Halosphaera observed throughout the winter growing season.
Determine the ecological context for a Halosphaera bloom and the dynamics between Halosphaera/chlorophytes and the other phytoplankton in the winter.
Characterize the genetic diversity of phycomates throughout space and time in the region.
Overview
Sample Sites
Phycomate Characteristics
Community DNA
Halosphaera Systematics
Anticipated Results [still in progress of refining]
Research Importance [still in progress of refining]
The next two sections are to help answer objective 1 in my research proposal.
1. Determine possible abiotic factors influencing the abundance and morphological characteristics of Halosphaera observed throughout the winter growing season.
Taylor Dock (TD)
df <- data.frame(lat=48.72547085 , long=-122.5076196)
df %>%
leaflet(height=200, width = 300) %>%
addTiles() %>%
addMarkers(clusterOptions = markerClusterOptions(), popup = "Floating Dock")
still in progress - working on timeseries collage of TD
sample <- read.csv("Halo_sofar.csv")
p4 <- ggplot(sample) +
geom_line(aes(sample, cell_count, color="Cell Count"))+
geom_line(aes(sample, nitrate_mg, linetype="Dekati Sum", color="Nitrates (mg/L)")) +
geom_line(aes(sample, salinity_pu, linetype="PM10", color="Salinity (PSU)")) +
geom_line(aes(sample, ph, color="pH")) +
geom_line(aes(sample, water_temp_c, color="Temp (°C)")) +
labs(title = "", y="", x="") +
guides(linetype = "none", color=guide_legend(title="")) +
theme_gray(base_size = 10)
ggplotly(p4)
Date <- sample[1]
Season <- sample[48]
Sample <- sample[6]
Cells <- sample[17]
cell_count_B <- sample[18]
cell_count_C <- sample[19]
site_notes <- sample[20]
picking_notes <- sample[21]
samplenotes <- cbind(Sample, site_notes, picking_notes)
cellcount_table <- cbind(Sample, Date, Season, Cells, cell_count_B, cell_count_C)
cellcount_table|>
gt()|>
cols_label(
sample ~ "Sample",
date ~ "Date",
Season ~ "Season",
cell_count ~ "A",
Cell_count_b ~ "B",
Depth_cell_count ~ "C")|>
data_color(
columns = vars(cell_count),
colors = scales::col_numeric(
palette = c(
"white", "#e76bf3", "#e76bf3"),
domain = NULL)
)|>
data_color(
columns = vars(Cell_count_b),
colors = scales::col_numeric(
palette = c(
"white", "#00bfc4", "#00bfc4"),
domain = NULL)
)|>
tab_header(
title = md("**Table 1:** *Halosphaera* Cell Counts 2022-2024."),
subtitle = "Data from both season 1 & season 2. Season 1 began on 01/13/23. Season 2 began on 12/01/23. A: initial surface tow, B: second surface tow. C: depth tow. Each surface tow sampled ~12.4 m³ of surface water at Taylor Dock in Bellingham, WA."
)|>
tab_options(table.font.color="#505050",
table_body.hlines.style =,
heading.background.color = NULL,
table.font.size = 10)|>
opt_align_table_header(align = "left") |>
tab_options(heading.padding = px(1))|>
opt_interactive()
vs_dt <- organizeddf
vs_dt[1:7] <- lapply(vs_dt[1:7], function(x) {
cell_spec(x, bold = T,
color = spec_color(x, end = 0.9),
font_size = spec_font_size(x))
})
vs_dt[9:17] <- lapply(vs_dt[9:17], function(x) {
cell_spec(x, bold = T,
color = spec_color(x, end = 0.9),
font_size = spec_font_size(x))
})
vs_dt[8] <- cell_spec(vs_dt[[8]], color = "white", bold = T,
background = spec_color(1:10, end = 0.9, option = "A", direction = -1))
kbl(vs_dt, escape = F, align = "c") %>%
kable_classic("striped", full_width = F) %>%
scroll_box(width = "500px", height = "200px")
| ambientweather.F | tide_ft | highest.high | lowest.just.prior | lowest.low | tide_range_calc_1 | tide_range_calc_3 | cell_count | Cell_count_b | lunar_distance_mi | nitrate_mg | salinity_pu | total_diss_solids_ppt | ph | orp_mv | chl_a_flu_rfu | water_temp_c |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 41 | 6.67 | 9.4 | 6.78 | -1.38 | -0.11 | 10.78 | 0 | NA | 247101 | 28.262569 | NA | NA | NA | NA | NA | NA |
| 45 | 9.18 | 9.18 | -0.73 | -0.73 | 9.91 | 9.91 | 0 | NA | 249605 | 0.91175 | 27.21819 | 28.01624 | 7.6796 | 275.2353 | 0.00662 | 8.4969 |
| 44 | 8.97 | 8.97 | 0.01 | 0.01 | 8.96 | 8.96 | 0 | NA | 250758 | 42.84298 | 30.53366 | 31.07706 | 8.16124 | 219.65986 | 0.00373 | 8.70334 |
| 44 | 8.43 | 8.79 | 0.83 | 0.83 | 7.6 | 7.96 | 0 | NA | 251148 | 21.45113 | 28.13971 | 28.94269 | 8.22413 | 190.61506 | 0.00327 | 7.95347 |
| 51 | 8.65 | 8.65 | 1.74 | 1.74 | 6.91 | 6.91 | 0 | NA | 250730 | 30.08332 | 31.07493 | 31.51527 | 8.25449 | 206.55585 | 0.00144 | 9.16134 |
| 48 | 8.14 | 8.56 | 2.71 | 2.71 | 5.43 | 5.85 | 0 | NA | 249520 | 16.1092 | 17.34768 | 18.58175 | 8.31576 | 216.59472 | 0.00346 | 8.48911 |
| 42 | 8.52 | 8.52 | 3.71 | 3.71 | 4.81 | 4.81 | 0 | NA | 247601 | 0.77432 | 10.24423 | 11.46326 | 8.14896 | 204.16494 | 0.00524 | 7.7883 |
| 42 | 8.52 | 8.52 | 4.68 | 2.05 | 3.84 | 6.47 | 0 | NA | 245113 | 1.53244 | 7.12233 | 8.19599 | 8.18772 | 188.39212 | 0.00343 | 7.28873 |
| 37 | 8.55 | 8.55 | 5.55 | 1.03 | 3 | 7.52 | 0 | NA | 241993 | 18.12098 | 29.8876 | 30.54439 | 7.74203 | 251.90447 | 0.00114 | 8.07926 |
| 43 | 8.6 | 8.6 | 6.28 | 0.02 | 2.32 | 8.58 | 0 | NA | 238965 | 3.37163 | 30.57029 | 31.04424 | 8.33544 | 223.70728 | 0.00038 | 9.28107 |
| 47 | 8.66 | 8.66 | 6.84 | -0.93 | 1.82 | 9.59 | 0 | NA | 236034 | 11.92593 | 29.59702 | 30.20882 | 8.35567 | 210.60689 | 0.00047 | 8.65736 |
| 45 | 8.26 | 8.95 | 7.23 | -1.74 | 1.03 | 10.69 | 0 | NA | 233623 | 14.21927 | 30.42514 | 30.90077 | 8.34947 | 200.72277 | 0 | 9.37628 |
| 41 | 8.71 | 9.32 | 7.44 | -2.34 | 1.27 | 11.66 | 0 | NA | 231147 | 12.29165 | 30.7497 | 31.26385 | 8.3672 | 189.23432 | 0.00086 | 8.76634 |
| 43 | 8.6 | 9.51 | 7.49 | -2.69 | 1.11 | 12.2 | 0 | NA | 229688 | 9.21862 | 29.29746 | 29.98957 | 8.37886 | 193.17085 | 0.00125 | 8.19236 |
| 44 | 8.29 | 9.56 | 7.35 | -2.76 | 0.18 | 12.32 | 5 | NA | 228828 | 11.72687 | 28.82727 | 29.48215 | 8.35159 | 195.77373 | 0.0015 | 8.83294 |
| 36 | 9.53 | 9.53 | -2.5 | -2.5 | 12.03 | 12.03 | 1 | NA | 228670 | 11.57442 | 30.78305 | 31.34193 | 8.35621 | 191.96836 | 0.00141 | 8.37332 |
| 39 | 9.41 | 9.47 | -1.9 | -1.9 | 11.31 | 11.37 | 1 | NA | 228874 | 12.82579 | 30.16181 | 30.78614 | 8.36727 | 201.89099 | 0.00145 | 8.2677 |
| 42 | 9.41 | 9.41 | -0.97 | -0.97 | 10.38 | 10.38 | 4 | NA | 229579 | 3.00837 | 28.83484 | 29.54172 | 8.07056 | 61.93954 | 0.00059 | 8.20661 |
| 48 | 9.37 | 9.37 | 0.28 | 0.28 | 9.09 | 9.09 | 0 | NA | 230628 | 18.34323 | 31.72831 | 32.09588 | 8.31411 | 188.66809 | 0.00202 | 9.2901 |
| 48 | 9.33 | 9.33 | 1.75 | 1.75 | 7.58 | 7.58 | 5 | NA | 231987 | 4.86718 | 20.18266 | 21.32461 | 8.18507 | 208.8915 | 0.00369 | 8.87895 |
| 48 | 9.29 | 9.29 | 3.3 | 3.3 | 5.99 | 5.99 | 3 | NA | 233369 | 8.61865 | 16.50039 | 17.73133 | 8.37898 | 194.78409 | 0.00396 | 8.73145 |
| 45 | 9.23 | 9.23 | 4.76 | 1.12 | 4.47 | 8.11 | 2 | NA | 234787 | 10.35693 | 25.40514 | 26.29453 | 8.40386 | 206.03505 | 0.00802 | 8.83336 |
| 44 | 9.12 | 9.12 | 5.95 | -0.09 | 3.17 | 9.21 | 1 | NA | 236939 | 8.8109 | 17.80078 | 19.1504 | 8.19794 | 210.21223 | 0.00197 | 6.84801 |
| 44 | 8.97 | 8.97 | 6.77 | -1.03 | 2.2 | 10 | 0 | 0 | 238884 | 11.22984 | 31.23722 | 31.71462 | 8.35045 | 201.6884 | 0.00421 | 8.68704 |
| 44 | 8.77 | 9.16 | 7.21 | -1.64 | 1.56 | 10.8 | 0 | 0 | 241133 | 11.81177 | 27.70757 | 28.52509 | 8.3786 | 215.91129 | 0.00558 | 8.00364 |
| 49 | 8.53 | 9.59 | 7.36 | -1.95 | 1.17 | 11.54 | 0 | 1 | 243790 | 9.90111 | 23.1936 | 24.22541 | 8.41446 | 216.45978 | 0.00581 | 8.53067 |
| 49 | 8.26 | 9.74 | 7.3 | -2 | 0.96 | 11.74 | 0 | 0 | 245435 | 10.90852 | 30.14927 | 30.70437 | 8.34202 | 212.7812 | 0.00359 | 8.79806 |
| 51 | 7.93 | 9.69 | 7.1 | -1.85 | 0.83 | 11.54 | 0 | 0 | 247619 | 2.83223 | 31.26287 | 31.69932 | 8.3905 | 199.74965 | 0.00237 | 9.02441 |
| 51 | 9.53 | 9.53 | -1.54 | -1.54 | 11.07 | 11.07 | 0 | 0 | 248667 | 9.3716 | 30.11109 | 30.67992 | 8.38701 | 165.56257 | 0.00238 | 8.71282 |
| 53 | 9.34 | 9.34 | -1.09 | -1.09 | 10.43 | 10.43 | 0 | 2 | 250266 | 8.66201 | 30.96427 | 31.4301 | 8.4008 | 271.09675 | 0.00157 | 9.01171 |
| 45 | 9.17 | 9.17 | -0.51 | -0.51 | 9.68 | 9.68 | 3 | 2 | 251210 | 1.88223 | 19.31224 | 20.47344 | 8.30957 | 238.20225 | 0.00328 | 9.03188 |
| 34 | 8.96 | 8.96 | 0.41 | 0.41 | 8.55 | 8.55 | 4 | 0 | 251505 | 9.17252 | 15.23237 | 16.27202 | 8.56835 | 244.33227 | 0.00428 | 6.72886 |
| 41 | 8.86 | 8.86 | 1.38 | 1.38 | 7.48 | 7.48 | 0 | 0 | 251039 | 11.65068 | 28.34567 | 29.06413 | 8.33923 | 204.89765 | 0.00315 | 8.58107 |
| 42 | 8.78 | 8.78 | 2.51 | 2.51 | 6.27 | 6.27 | 0 | 0 | 249795 | 11.86809 | 29.1459 | 29.76341 | 8.35085 | 186.54544 | 0.00519 | 8.99314 |
| 45 | 8.71 | 8.71 | 3.74 | 3.74 | 4.97 | 4.97 | 1 | 0 | 247791 | 12.95757 | 28.56749 | 29.18236 | 8.37137 | 198.04515 | 0.00366 | 9.48634 |
| 44 | 8.63 | 8.63 | 4.98 | 2.29 | 3.65 | 6.34 | 0 | 3 | 245109 | 3.83192 | 28.87304 | 29.50193 | 8.39513 | 193.11191 | 0.00511 | 9.12461 |
| 44 | 8.59 | 8.59 | 6.12 | 1.3 | 2.47 | 7.29 | 0 | 0 | 241614 | 10.29073 | 15.58224 | 16.91334 | 8.52624 | 176.765 | 0.00438 | 7.28738 |
| 37 | 8.6 | 8.6 | 6.97 | 0.32 | 1.63 | 8.28 | 2 | 2 | 238078 | 10.87828 | 25.55755 | 26.50911 | 8.40787 | 184.76826 | 0.00391 | 7.95474 |
| 37 | 8.66 | 8.66 | 7.48 | -0.61 | 1.18 | 9.27 | 0 | 0 | 234516 | 12.76361 | 29.61839 | 30.19649 | 8.38561 | 151.83506 | 0.00487 | 9.03416 |
| 46 | 8.76 | 8.94 | 7.7 | -1.45 | 1.06 | 10.39 | 4 | 1 | 230958 | 11.23315 | 27.21488 | 28.04942 | 8.44955 | 235.81721 | 0.00407 | 8.22661 |
| 39 | 8.84 | 9.3 | 7.7 | -2.15 | 1.14 | 11.45 | 1 | 0 | 229467 | 10.97075 | 25.3106 | 26.32733 | 8.46916 | 173.44643 | 0.00454 | 7.62211 |
| 22 | 8.82 | 9.49 | 7.49 | -2.65 | 1.33 | 12.14 | 0 | 1 | 226343 | 3.16474 | 22.81534 | 24.08988 | 8.50326 | 161.87004 | 0.00577 | 6.21026 |
| 9 | 8.64 | 9.57 | 7.09 | -2.87 | 1.55 | 12.44 | 0 | 0 | 225304 | 4.41527 | 30.0786 | 30.87241 | 8.47131 | 191.54912 | 0.00356 | 6.89002 |
| 17 | 8.22 | 9.59 | 6.48 | -2.73 | 1.74 | 12.32 | 5 | 3 | 225345 | 12.07369 | 29.95758 | 30.80232 | 8.46264 | 187.51889 | 0.00291 | 6.60087 |
| 13 | 9.59 | 9.59 | -2.18 | -2.18 | 11.77 | 11.77 | 0 | 0 | 225859 | 11.59008 | 29.78639 | 30.64509 | 8.45381 | 187.49691 | 0.00465 | 6.64837 |
| 20 | 9.59 | 9.59 | -1.21 | -1.21 | 10.8 | 10.8 | 1 | 0 | 227260 | 12.10643 | 29.8443 | 30.80205 | 8.49538 | 182.58112 | 0.00359 | 5.9174 |
| 26 | 9.58 | 9.58 | 0.14 | 0.14 | 9.44 | 9.44 | 3 | 7 | 229424 | 12.60982 | 29.57508 | 30.46242 | 8.47164 | 188.83295 | 0.0036 | 6.57985 |
| 32 | 9.53 | 9.53 | 1.75 | 1.75 | 7.78 | 7.78 | 0 | 3 | 231810 | 9.65712 | 1.0995 | 1.14145 | 9.37752 | 192.25118 | 0.00221 | 3.06607 |
| 30 | 9.41 | 9.41 | 3.46 | 2.22 | 5.95 | 7.19 | 2 | 1 | 234309 | 10.42099 | 29.96868 | 30.74781 | 8.41914 | 184.14405 | 0.0018 | 7.14402 |
| 34 | 9.22 | 9.22 | 5.08 | 1.09 | 4.14 | 8.13 | 1 | 3 | 236850 | 12.17441 | 29.60077 | 30.49553 | 8.47272 | 192.97695 | 0.00497 | 6.47873 |
| 37 | 8.96 | 8.96 | 6.37 | 0.15 | 2.59 | 8.81 | 2 | 3 | 239309 | 11.92969 | 29.60774 | 30.47335 | 8.41776 | 190.64596 | 0.00508 | 6.68815 |
| 41 | 8.67 | 8.67 | 7.14 | -0.52 | 1.53 | 9.19 | 2 | 3 | 241816 | 13.08753 | 29.72298 | 30.43991 | 8.42885 | 229.24344 | 0.00529 | 7.80062 |
| 44 | 8.39 | 8.93 | 7.38 | -0.94 | 1.01 | 9.87 | 10 | 12 | 243960 | 11.75653 | 22.03692 | 23.18197 | 8.41185 | 199.29945 | 0.01342 | 7.9717 |
| 39 | 9.31 | 9.31 | -1.15 | -1.15 | 10.46 | 10.46 | 1 | 1 | 245458 | 10.49729 | 20.10976 | 21.43533 | 8.44815 | 195.72107 | 0.00992 | 6.65226 |
| 48 | 7.96 | 9.41 | 7 | -1.21 | 0.96 | 10.62 | 0 | 0 | 247842 | 11.67678 | 28.6198 | 29.46621 | 8.43128 | 191.22398 | 0.00537 | 7.35649 |
| 49 | 7.79 | 9.34 | 6.67 | -1.15 | 1.12 | 10.49 | 1 | 2 | 249564 | 11.21696 | 23.11013 | 24.26859 | 8.48927 | 214.30234 | 0.01015 | 7.26688 |
| 50 | 7.58 | 9.19 | 6.26 | -0.98 | 1.32 | 10.17 | 4 | 23 | 250809 | 9.00913 | 15.1722 | 16.43709 | 8.44883 | 204.92145 | 0.01362 | 7.8185 |
| 57 | 7.28 | 9.03 | 5.78 | -0.7 | 1.5 | 9.73 | 1 | 1 | 251612 | 13.97296 | 28.07632 | 28.7733 | 8.42886 | 205.41281 | 0.01683 | 9.35818 |
| 56 | 6.9 | 8.92 | 5.22 | -0.25 | 1.68 | 9.17 | 0 | 2 | 252070 | 7.72472 | 8.09815 | 9.15193 | 8.39938 | 238.81449 | 0.0228 | 10.07409 |
| 68 | 6.45 | 8.86 | 4.58 | 0.41 | 1.87 | 8.45 | 8 | 7 | 251919 | 10.45958 | 25.28916 | 26.21433 | 8.4439 | 202.96516 | 0.01024 | 8.49248 |
| 56 | 6 | 8.82 | 3.86 | 1.27 | 2.14 | 7.55 | 1 | 0 | 251061 | 9.2185 | 0 | 0.00067 | 8.57068 | 194.23425 | 0.01411 | 12.63253 |
| 54 | 8.76 | 8.76 | 2.32 | 2.32 | 6.44 | 6.44 | 0 | 1 | 250358 | 11.61158 | 29.01136 | 29.66763 | 8.3859 | 222.44997 | 0.01208 | 8.80488 |
| 50 | 8.66 | 8.66 | 3.49 | 3.1 | 5.17 | 5.56 | 1 | 4 | 248487 | 8.89704 | 11.60791 | 12.8282 | 8.42726 | 193.02787 | 0.01816 | 8.67412 |
| 50 | 8.53 | 8.53 | 4.69 | 2.33 | 3.84 | 6.2 | 4 | 0 | 245685 | 8.61899 | 14.36469 | 15.62234 | 8.4514 | 211.24479 | 0.01665 | 8.52017 |
| 43 | 8.41 | 8.41 | 1.57 | 1.57 | 6.84 | 6.84 | 1 | 3 | 242484 | 8.62757 | 15.3648 | 16.63496 | 8.45166 | 214.05297 | 0.01381 | 8.1801 |
| 43 | 8.35 | 8.35 | 0.82 | 0.82 | 7.53 | 7.53 | 1 | 2 | 238841 | 11.90027 | 28.63006 | 29.31527 | 8.41488 | 201.5066 | 0.01293 | 8.66889 |
| 45 | 8.35 | 8.35 | 7.43 | 0.07 | 0.92 | 8.28 | 1 | 0 | 234979 | 3.78751 | 27.7475 | 28.57513 | 8.22158 | 184.1279 | 0.01523 | 7.97764 |
| 43 | 8.39 | 8.51 | 7.61 | -0.68 | 0.78 | 9.19 | 24 | 22 | 230876 | 3.19125 | 18.18172 | 19.46324 | 8.52446 | 183.20828 | 0.01572 | 7.59894 |
| 48 | 8.47 | 8.86 | 7.46 | -1.38 | 1.01 | 10.24 | 2 | 1 | 227507 | 10.43971 | 28.03477 | 28.805 | 8.23101 | 182.79736 | 0.02403 | 8.33426 |
| 44 | 8.16 | 9.05 | 7.07 | -1.94 | 1.09 | 10.99 | 41 | 44 | 224676 | 10.83745 | 20.98474 | 22.1758 | 8.51952 | 192.66857 | 0.01916 | 7.77361 |
| 44 | 8.57 | 9.15 | 6.45 | -2.27 | 2.12 | 11.42 | 33 | 29 | 223003 | 9.914793304 | 28.46640165 | 29.22 | 7.647068374 | 237.8122483 | 0 | 8.197812957 |
| 45 | 8.06 | 9.22 | 5.61 | -2.23 | 2.45 | 11.45 | 206 | 200 | 222662 | 13.18368 | 26.74054 | 27.62654 | 7.81712 | 207.6959 | 0 | 8.02364 |
| 48 | 8.04 | 9.29 | -1.77 | -1.77 | 9.81 | 11.06 | 0 | 0 | 223567 | 14.03533523 | 29.61965325 | 30.26909815 | 7.752070715 | 231.676528 | 0 | 8.35496165 |
| 42 | 9.36 | 9.36 | -0.86 | -0.86 | 10.22 | 10.22 | 0 | 2 | 224400 | 10.51075 | 18.49719 | 19.76382 | 7.83289 | 211.42843 | 0 | 7.68878 |
| 37 | 9.4 | 9.4 | 0.43 | 0.43 | 8.97 | 8.97 | 10 | 1 | 226961 | 11.37019273 | 29.54230388 | 30.21247608 | 7.719908558 | 221.3596515 | 0 | 8.22289875 |
| 39 | 9.37 | 9.37 | 1.96 | 1.96 | 7.41 | 7.41 | 1 | 0 | 229956 | 13.23287133 | 30.24080015 | 30.86427735 | 7.741216845 | 177.353012 | 0 | 8.1686293 |
| 36 | 9.23 | 9.23 | 3.56 | 3.56 | 5.67 | 5.67 | 0 | NA | 233278 | 12.3309302 | 30.28627805 | 30.9274476 | 7.750697295 | 182.9649565 | 0 | 8.00063558 |
| 39 | 8.96 | 8.96 | 5.06 | 0.71 | 3.9 | 8.25 | 4 | NA | 236946 | 13.57051033 | 30.09515058 | 30.7394555 | 7.762877117 | 206.6943842 | 0 | 8.116915542 |
| 41 | 8.42 | 8.59 | 6.27 | 0.23 | 2.15 | 8.36 | 2 | NA | 240172 | 12.66859805 | 30.17834845 | 30.83293 | 7.76935168 | 195.5636295 | 0 | 7.95979545 |
| 44 | 8.11 | 8.15 | 6.98 | -0.04 | 1.13 | 8.19 | 7 | NA | 243100 | 14.14147668 | 29.48459026 | 30.24032311 | 7.789518416 | 212.3632932 | 0 | 7.575512663 |
| 50 | 7.19 | 8.54 | 7.04 | -0.17 | 0.15 | 8.71 | 0 | NA | 245840 | 13.40754617 | 30.08541714 | 30.74851395 | 7.784783019 | 241.6442505 | 0 | 7.948584795 |
| 47 | 7.16 | 8.87 | 6.72 | -0.22 | 0.44 | 9.09 | 5 | NA | 247309 | 12.9780962 | 29.09334252 | 29.89571404 | 7.774423552 | 224.3272704 | 0 | 7.423611141 |
| 43 | 8.22 | 8.96 | -0.24 | -0.24 | 8.46 | 9.2 | 0 | NA | 249126 | 14.76720062 | 29.44142067 | 30.17131462 | 7.77643179 | 226.3788514 | 0 | 7.7786663 |
| 54 | 7.27 | 8.89 | 5.91 | -0.21 | 1.36 | 9.1 | 0 | 0 | 250985 | 13.40848804 | 27.46186516 | 28.17872764 | 7.85472926 | 237.3632032 | 0 | 9.16265994 |
| 49 | 7.29 | 8.24 | 5.42 | -0.1 | 1.87 | 8.34 | 2 | 5 | 251903 | 13.86438095 | 29.430312 | 29.9843686 | 7.88365466 | 230.440612 | 0.04441442 | 9.3106547 |
| 45 | 7.21 | 8.59 | 4.86 | 0.12 | 2.35 | 8.47 | 0 | 0 | 252347 | 13.53735735 | 29.71712597 | 30.34787035 | 7.9005912 | 184.4166881 | 0.2528721 | 8.44063636 |
| 46 | 8.5 | 8.5 | 0.5 | 0.5 | 8 | 8 | 0 | 0 | 252430 | 14.0121686 | 29.13243175 | 29.81842228 | 7.84276758 | 191.7705436 | 0.31456164 | 8.3463249 |
| 32 | 8.47 | 8.47 | 1.07 | 1.07 | 7.4 | 7.4 | 0 | 0 | 252231 | 13.5670877 | 22.2228825 | 23.41112255 | 7.92438487 | 201.9870455 | 0 | 7.31929309 |
| 32 | 8.47 | 8.47 | 1.83 | 1.83 | 6.64 | 6.64 | 0 | 0 | 251575 | 10.68358285 | 19.56849675 | 20.9083633 | 7.889529175 | 209.555847 | 0 | 6.56712627 |
| 45 | 8.5 | 8.44 | 2.74 | 2.74 | 5.76 | 5.7 | 0 | 0 | 250286 | 12.98647835 | 28.8818215 | 29.6524771 | 7.816673305 | 207.861921 | 0.226699204 | 7.79352846 |
| 37 | 8.35 | 8.35 | 3.75 | 3.75 | 4.6 | 4.6 | 0 | 0 | 248488 | 12.90858 | 27.90932 | 28.69052 | 7.80153 | NA | 0.04193 | 8.02003 |
| 39 | 5.5 | 8.2 | 1.05 | 1.05 | 4.45 | 7.15 | 0 | 0 | 244659 | 10.94843405 | 18.15567 | 19.5409136 | 7.848154095 | NA | 0 | 6.277893795 |
| 40 | 7.53 | 8.05 | 5.73 | 5.73 | 1.8 | 2.32 | 0 | 2 | 243372 | 12.28229177 | 28.91595523 | 29.70183405 | 7.838671073 | NA | 0 | 7.651444 |
| 38 | 7.73 | 7.94 | 6.55 | 0.63 | 1.18 | 7.31 | 1 | 0 | 240053 | 12.344171 | 28.60569455 | 29.43065835 | 7.849676035 | NA | 0 | 7.509972605 |
| 32 | 7.06 | 7.88 | 7.16 | 0.26 | -0.1 | 7.62 | 1 | 0 | 236092 | 12.94163413 | 28.2843889 | 29.14290755 | 7.86705276 | NA | 0 | 7.413958235 |
| 32 | 7.79 | 8.07 | 7.3 | -0.14 | 0.49 | 8.21 | 0 | 0 | 232330 | 12.5264663 | 29.21113242 | 29.977719 | 7.764187148 | 197.8251364 | 0 | 7.639352173 |
| 38 | 7.7 | 8.37 | 7.03 | -0.58 | 0.67 | 8.95 | 1 | 1 | 228463 | 13.83297978 | 27.9482048 | 28.90503875 | 7.870091 | 215.786942 | 0 | 6.812447275 |
| 44 | 7.7 | 8.54 | 6.47 | -1 | 1.23 | 9.54 | 1 | 9 | 225423 | 13.49017359 | 27.2606007 | 28.12503348 | 7.874744726 | 222.465057 | 0 | 7.923005256 |
| 43 | 7.92 | 8.65 | 5.63 | -1.25 | 2.29 | 9.9 | 0 | 0 | 223204 | 14.14481191 | 30.02188509 | 30.67771261 | 7.896941748 | 219.7107961 | 0.61988037 | 8.044682978 |
| 49 | 8.04 | 8.74 | 4.55 | -1.19 | 3.49 | 9.93 | 2 | 0 | 221955 | 13.90378469 | 29.83176607 | 30.52079006 | 7.885540287 | 212.3545043 | 0.669329098 | 7.894712746 |
| 47 | 8.05 | 8.86 | 3.05 | -0.72 | 5 | 9.58 | 0 | 0 | 221871 | 13.98559121 | 29.36874259 | 30.11253997 | 7.905112331 | 209.8675548 | 0.213712405 | 7.732659441 |
| 48 | 7.75 | 8.98 | 2.08 | 0.14 | 5.67 | 8.84 | 0 | 0 | 222825 | 15.35316395 | 29.3547758 | 30.09896475 | 7.90653638 | 221.8313675 | 0.323626937 | 7.735324605 |
| 44 | 8.26 | 9.06 | 1.31 | 1.31 | 6.95 | 7.75 | 0 | 2 | 226457 | 14.95471295 | 29.2809184 | 30.03548875 | 7.89246666 | 217.02633 | 0.206590665 | 7.70293824 |
| 45 | 7.14 | 9.05 | 2.66 | 2.66 | 4.48 | 6.39 | 1 | 0 | 228061 | 11.84451223 | 23.63810509 | 24.76104541 | 7.94254865 | 220.7254493 | 0.017992285 | 7.376593039 |
| 32 | 8.91 | 8.91 | 4.02 | 0.14 | 4.89 | 8.77 | 0 | 0 | 231614 | 13.64040384 | 27.82853995 | 28.68122095 | 7.932940005 | 223.7344605 | 0.167348099 | 7.707961284 |
| 43 | 8.61 | 8.61 | 5.24 | -0.34 | 3.37 | 8.95 | 0 | 0 | 235422 | 12.55660845 | 25.82085525 | 26.7608113 | 7.889530905 | 230.0286995 | 0.470966205 | 7.97677184 |
| 50 | 8.17 | 8.17 | 6.18 | -0.44 | 1.99 | 8.61 | 0 | 0 | 239492 | 14.97194868 | 27.99800682 | 28.77271582 | 7.860697727 | 208.02975 | 0.549878243 | 8.279841068 |
| 53 | 7.64 | 7.94 | 6.7 | -0.25 | 0.94 | 8.19 | 0 | 0 | 242947 | 15.52151831 | 28.16283539 | 28.73756365 | 7.939198881 | 204.3151839 | 0.758077438 | 10.07598277 |
| 60 | 4.96 | 8.27 | 6.58 | 0.08 | -1.62 | 8.19 | 1 | 0 | 246390 | 14.11280685 | 26.39878944 | 26.97832837 | 8.042002805 | 201.5243268 | 0.490269258 | 11.54573244 |
| 46 | 6.25 | 8.48 | 6.09 | 0.39 | 0.16 | 8.09 | 0 | 0 | 248382 | 15.33927333 | 29.16670561 | 29.74493417 | 8.155957304 | 210.9895465 | 1.007460021 | 9.278767261 |
| 50 | 6.46 | 8.53 | 5.57 | 0.59 | 0.89 | 7.94 | 0 | 0 | 250476 | 16.19012491 | 29.64122935 | 30.14417611 | 8.201094419 | 209.4675062 | 1.96596507 | 9.6292575 |
| 54 | 6.52 | 8.46 | 5.03 | 0.74 | 1.49 | 7.72 | 0 | 0 | 251639 | 15.06756383 | 25.67413781 | 26.40446648 | 8.310659762 | 198.3005971 | 1.086892495 | 10.32793912 |
| 56 | 6.64 | 8.32 | 4.44 | 0.92 | 2.2 | 7.4 | 0 | 0 | 252295 | 16.70086873 | 29.61134331 | 30.08386304 | 8.315487904 | 209.7721304 | 3.178184408 | 9.943545519 |
| 49 | 6.81 | 8.17 | 3.78 | 1.21 | 3.03 | 6.96 | 0 | 0 | 252392 | 15.71208124 | 28.80927861 | 29.41773574 | 8.048957274 | 238.6120616 | 1.835599023 | 9.270921726 |
| 52 | 6.95 | 8.08 | 3.04 | 1.63 | 3.91 | 6.45 | 0 | 0 | 252019 | 16.7732825 | 29.28009242 | 29.75243012 | 8.252073538 | 215.7230762 | 2.126205792 | 10.21536035 |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
df1 <- sample[8:14]
df2 <- sample[17:18]
df3 <- sample[27:28]
df4 <- sample[32]
df5 <- sample[35:36]
df6 <- sample[38:40]
organizeddf <- cbind(df1, df2, df3, df4, df5, df6)
gt_plt_summary(organizeddf, title = "")
| 236 rows x 17 cols | ||||||
| Column | Plot Overview | Missing | Mean | Median | SD | |
|---|---|---|---|---|---|---|
| ambientweather.F | 51.3% | 43.0 | 44.0 | 8.8 | ||
| tide_ft | 51.3% | 8.3 | 8.5 | 0.9 | ||
| highest.high | 51.3% | 8.9 | 8.9 | 0.5 | ||
| lowest.just.prior | 51.3% | 4.2 | 5.0 | 2.9 | ||
| lowest.low | 51.3% | 0.1 | 0.0 | 1.7 | ||
| tide_range_calc_1 | 51.3% | 4.1 | 3.0 | 3.4 | ||
| tide_range_calc_3 | 51.3% | 8.8 | 8.8 | 1.9 | ||
| cell_count | 51.3% | 3.8 | 0.0 | 19.8 | ||
| Cell_count_b | 64.0% | 4.8 | 0.0 | 22.4 | ||
| lunar_distance_mi | 51.3% | 239,650.2 | 241,133.0 | 9,839.9 | ||
| nitrate_mg | 51.3% | 11.9 | 11.9 | 5.3 | ||
| salinity_pu | 51.7% | 25.9 | 28.7 | 6.4 | ||
| total_diss_solids_ppt | 51.7% | 26.7 | 29.4 | 6.3 | ||
| ph | 51.7% | 8.2 | 8.3 | 0.3 | ||
| orp_mv | 53.8% | 205.1 | 204.9 | 24.7 | ||
| chl_a_flu_rfu | 51.7% | 0.1 | 0.0 | 0.5 | ||
| water_temp_c | 51.7% | 8.2 | 8.1 | 1.2 | ||
organizeddf %>%
describeBy() %>%
kbl(digits = 2) %>%
kable_styling(
font_size = 10)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ambientweather.F | 1 | 115 | 43.03 | 8.80 | 44.00 | 43.69 | 7.41 | 9.00 | 68.00 | 59.00 | -1.05 | 2.83 | 0.82 |
| tide_ft | 2 | 115 | 8.29 | 0.92 | 8.50 | 8.39 | 0.68 | 4.96 | 9.59 | 4.63 | -1.04 | 1.04 | 0.09 |
| highest.high | 3 | 115 | 8.88 | 0.46 | 8.89 | 8.89 | 0.55 | 7.88 | 9.74 | 1.86 | -0.10 | -0.95 | 0.04 |
| lowest.just.prior | 4 | 115 | 4.18 | 2.93 | 5.03 | 4.45 | 3.02 | -2.50 | 7.70 | 10.20 | -0.62 | -0.88 | 0.27 |
| lowest.low | 5 | 115 | 0.10 | 1.69 | 0.01 | 0.02 | 1.65 | -2.87 | 5.73 | 8.60 | 0.52 | 0.09 | 0.16 |
| tide_range_calc_1 | 6 | 115 | 4.11 | 3.39 | 3.00 | 3.79 | 2.95 | -1.62 | 12.03 | 13.65 | 0.69 | -0.75 | 0.32 |
| tide_range_calc_3 | 7 | 115 | 8.78 | 1.95 | 8.77 | 8.82 | 2.02 | 2.32 | 12.44 | 10.12 | -0.25 | -0.04 | 0.18 |
| cell_count | 8 | 115 | 3.76 | 19.81 | 0.00 | 0.84 | 0.00 | 0.00 | 206.00 | 206.00 | 9.34 | 91.56 | 1.85 |
| Cell_count_b | 9 | 85 | 4.84 | 22.43 | 0.00 | 0.94 | 0.00 | 0.00 | 200.00 | 200.00 | 7.83 | 64.52 | 2.43 |
| lunar_distance_mi | 10 | 115 | 239650.24 | 9839.88 | 241133.00 | 240087.19 | 13570.24 | 221871.00 | 252430.00 | 30559.00 | -0.25 | -1.38 | 917.57 |
| nitrate_mg | 11 | 115 | 11.92 | 5.30 | 11.93 | 11.84 | 2.54 | 0.77 | 42.84 | 42.07 | 1.84 | 10.25 | 0.49 |
| salinity_pu | 12 | 114 | 25.88 | 6.39 | 28.72 | 27.14 | 2.02 | 0.00 | 31.73 | 31.73 | -1.96 | 3.69 | 0.60 |
| total_diss_solids_ppt | 13 | 114 | 26.69 | 6.27 | 29.45 | 27.97 | 1.93 | 0.00 | 32.10 | 32.10 | -2.11 | 4.55 | 0.59 |
| ph | 14 | 114 | 8.19 | 0.30 | 8.31 | 8.19 | 0.23 | 7.65 | 9.38 | 1.73 | 0.17 | 0.44 | 0.03 |
| orp_mv | 15 | 109 | 205.06 | 24.70 | 204.92 | 205.16 | 18.78 | 61.94 | 275.24 | 213.30 | -1.37 | 9.33 | 2.37 |
| chl_a_flu_rfu | 16 | 114 | 0.15 | 0.46 | 0.00 | 0.03 | 0.01 | 0.00 | 3.18 | 3.18 | 4.28 | 20.10 | 0.04 |
| water_temp_c | 17 | 114 | 8.17 | 1.15 | 8.14 | 8.17 | 0.84 | 3.07 | 12.63 | 9.57 | -0.09 | 4.13 | 0.11 |
season1 <- read.csv("Halo.YEAR1.csv")
a1 <- ggplot(season1, aes(lunar_illumination_percent, cell_count_A))+
geom_point(color="plum")+
labs(y="Cell Count", x="Lunar Illumination (%)")+
theme_classic()
b1 <- ggplot(season1, aes(lunar_distance_mi, cell_count_A))+
geom_point(color="#00bfc4")+
labs(y="Cell Count", x="Lunar Distance (mi)")+
theme_classic()
c1<-ggplot(season1, aes(windspeed_MAX_mph, cell_count_A))+
geom_point(color="#ff61cc")+
labs(y="Cell Count", x="Windspeed MAX (mph)")+
theme_classic()
d1<-ggplot(season1, aes(tiderange_3_m, cell_count_A))+
geom_point(color="#9590ff")+
labs(y="Cell Count", x="Tidal Range 3 (m)")+
theme_classic()
e1<-ggplot(season1, aes(tide_range_calc_1, cell_count_A))+
geom_point(color="#39b600")+
labs(y="Cell Count", x="Tidal Range 1 (ft)")+
theme_classic()
f1<-ggplot(season1, aes(precip_mm, cell_count_A))+
geom_point(color="#d39200")+
labs(y="Cell Count", x="Precipitation (mm)")+
theme_classic()
g1<-ggplot(season1, aes(ambient_low, cell_count_A))+
geom_point(color="#f8766d")+
labs(y="Cell Count", x="Ambient Low (F)")+
theme_classic()
h1<-ggplot(season1, aes(as.numeric(ambient_high), cell_count_A))+
geom_point(color="#00b0f6")+
labs(y="Cell Count", x="Ambient High (F)")+
xlim(30, 60)+
theme_classic()
i1<-ggplot(season1, aes(airtemp_timeofcollection, cell_count_A))+
geom_point(color="#b79f00")+
labs(y="Cell Count", x="Ambient @ Coll. (F)")+
theme_classic()
j1<-ggplot(season1, aes(windspeed_MIN_mph, cell_count_A))+
geom_point(color="#e76bf3")+
labs(y="Cell Count", x="Windspeed MIN (mph)")+
theme_classic()
ggarrange(a1, b1, c1, d1, e1, f1, g1, h1, i1, j1)
n <- ggplot(sample, aes(sample, nitrate_mg, color=factor(cell_count),size=cell_count))+
geom_point(show.legend = F)+
labs(y="N (mg/L)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
o <- ggplot(sample, aes(sample, lunar_distance_mi, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Moon (mi)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
p <- ggplot(sample, aes(sample, lunar_illumination_percent, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Moon Ill.(%)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
q <- ggplot(sample, aes(sample, tide_range_calc_3, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Tide 3 (ft)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
r <- ggplot(sample, aes(sample, tide_ft, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Tide Ht. (ft)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
s <- ggplot(sample, aes(sample, tide_range_calc_1, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Tide 1 (ft)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
u<- ggplot(sample, aes(sample, salinity_pu, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Salt (PSU)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
v <- ggplot(sample, aes(sample, chl_a_flu_rfu, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Chl a (RFU)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
w <- ggplot(sample, aes(sample, water_temp_c, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Temp (C)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
x <- ggplot(sample, aes(sample, ph, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="pH", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
y <- ggplot(sample, aes(sample, orp_mv, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="ORP", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
aaa <- ggplot(sample, aes(sample, total_diss_solids_ppt, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="TDS", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
bbb <- ggplot(sample, aes(sample, density, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Density", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
fff <- ggplot(sample, aes(sample, next_full_days, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Moon Cycle", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
ggg <- ggplot(sample, aes(sample, cell_count, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Cells", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
hhh <- ggplot(sample, aes(sample, winds, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Winds (mph)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
iii <- ggplot(sample, aes(sample, ambientweather.F, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Air Temp (C)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
jjj<- ggplot(sample, aes(sample, lowest.just.prior, color=factor(cell_count), size=cell_count))+
geom_point(show.legend = F)+
labs(y="Low Tide (ft)", x="")+
theme(axis.text = element_text(size = 8))+
theme_classic()
ggarrange(n, o, p, q, ncol = 2, nrow = 2)
ggarrange(r, s, u, v, ncol = 2, nrow = 2)
ggarrange(w, x, y, aaa, ncol = 2, nrow = 2)
ggarrange(bbb, fff, hhh, iii, ncol = 2, nrow = 2)
ggarrange(jjj, ggg, ncol = 2, nrow = 2)
p1 <- ggplot(sample) +
geom_line(aes(sample, nitrate_mg, linetype="Dekati Sum", color="Nitrates (mg/L)")) +
geom_line(aes(sample, salinity_pu, linetype="PM10", color="Salinity (PSU)")) +
geom_line(aes(sample, ph, color="pH")) +
geom_line(aes(sample, water_temp_c, color="Temp (°C)")) +
labs(title = "Aquatroll Measurements at TD", y="", x="") +
guides(linetype = "none", color=guide_legend(title="")) +
theme_gray(base_size = 10) +
geom_vline(xintercept = 72, color="gray") +
xlim(32, max(sample$sample))
ggplotly(p1)
sample$date <- as.Date(sample$date, format = "%m/%d/%Y")
# Create a new column for Julian year days
sample$year_day <- as.numeric(format(sample$date, "%j"))
# Create a new column for Dec. first then Jan-Ap ordered Julian year days
sample$ordered_day <- ifelse(sample$year_day >= 335, sample$year_day - 334, sample$year_day + 31)
p2 <- ggplot(sample, aes(ordered_day, cell_count, color=Season)) +
geom_jitter(data=filter(sample, Season == "One"),
width = 0.2, size = 2, height = 0, alpha = 1) + # No alpha
geom_jitter(data=filter(sample, Season == "Two"),
width = 0.2, size = 2, height = 0, alpha = 0.5) + # alpha
labs(title="Cell count data (seasons 1 & 2)", y="Cell counts") +
guides(linetype = "none", color=guide_legend(title="")) +
theme_gray(base_size = 10) +
scale_color_manual(values=c("#00bfc4", "#c77cff")) +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank()) +
scale_x_continuous(name = "Julian Days")
#ggplotly(p2)
pz <- ggplot(sample, aes(ordered_day, log(cell_count+1), color=Season)) +
geom_jitter(data=filter(sample, Season == "One"),
width = 0.2, size = 2, height = 0, alpha = 1) + # No alpha
geom_jitter(data=filter(sample, Season == "Two"),
width = 0.2, size = 2, height = 0, alpha = 0.5) + # alpha
labs(title="Log of cell count data (seasons 1 & 2)", y="Log cell counts") +
guides(linetype = "none", color=guide_legend(title="")) +
theme_gray(base_size = 10) +
scale_color_manual(values=c("#00bfc4", "#c77cff")) +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank()) +
scale_x_continuous(name = "Julian Days")
#ggplotly(pz)
p3 <- ggplot(sample) +
geom_point(aes(sample, nitrate_mg, shape="Nitrates (mg/L)"), color="#f8766d") +
geom_point(aes(sample, salinity_pu, shape="Salinity (PPU)"), color="#00b0f6") +
geom_point(aes(sample, ph, shape="pH"), color="#7cae00") +
geom_point(aes(sample, water_temp_c, shape="Water Temp (C)"), color="#c77cff") +
labs(title = "Cell count vs. water measurements", y="") +
guides(linetype = "none", size = "none", color=guide_legend(title="")) +
scale_shape_manual(values = c("Nitrates (mg/L)" = 0, "Salinity (PPU)" = 1, "pH" = 9, "Water Temp (C)" = 2)) +
theme_gray(base_size = 10) +
geom_vline(xintercept = 72, color="gray") +
xlim(32, max(sample$sample))
ggplotly(p3)
ggplot(sample, aes(sample)) +
geom_point(aes(y = nitrate_mg, color = "Nitrates (mg/L)")) +
geom_point(aes(y = salinity_pu, color = "Salinity (PPU)")) +
geom_point(aes(y = ph, color = "pH")) +
geom_point(aes(y = water_temp_c, color = "Water Temp (C)")) +
facet_wrap(~cell_count) +
labs(title = "Cell count vs. water measurements", y = "") +
theme_grey(base_size = 10)+
guides(color = guide_legend(title = NULL)) # Set legend title to NULL to remove it
samples <- read.csv("Halo_sofar.csv")
aa <- ggplot(samples, aes(sample, nitrate_mg, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="Nitrates")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
cc <- ggplot(samples, aes(sample, salinity_pu, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="Salinity", y="Salinity (PSU)")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
dd <- ggplot(samples, aes(sample, ph, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="pH")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
ee <- ggplot(samples, aes(sample, chl_a_flu_rfu, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="Chlorophyll a Fluorescence", y="Chlorophyll a (RFU)")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
ff <- ggplot(samples, aes(sample, water_temp_c, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="Water Temp (C)")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
gg <- ggplot(samples, aes(sample, tide_range_calc_3, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="Tidal Range 3")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
hh <- ggplot(samples, aes(sample, winds, color=as.factor(cell_count)))+
geom_point(show.legend = F)+
labs(title="Wind speed (mph)")+
geom_vline(xintercept=53, color = "gray80", alpha = 0.8)+
geom_vline(xintercept = 68, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=70, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=71, color = "gray80", alpha = 0.8)+
geom_vline(xintercept=72, color = "gray80", alpha = 0.8)+
theme_classic()
ggplotly(aa)
ggplotly(cc)
ggplotly(dd)
ggplotly(ee)
ggplotly(ff)
ggplotly(gg)
ggplotly(hh)
halo <- read.csv("halo_022824.csv")
a <- ggplot(halo, aes(nitrate_mg))+
geom_histogram(binwidth = 5, color = "#00bf7d", fill="white", alpha = 0.7) +
labs(title = "Nitrates", x = "nitrates (mg/L)", y = "Frequency")+
theme_classic()
b <- ggplot(halo, aes(salinity_PSU))+
geom_histogram(binwidth = 5, color = "#619cff", fill="white", alpha = 0.7) +
labs(title = "Salinity", x = "salinity_PSU", y = "Frequency")+
theme_classic()
c <- ggplot(halo, aes(water_temp_c))+
geom_histogram(binwidth = 1, color = "red", fill="white", alpha = 0.7) +
labs(title = "Water Temperature", x = "water_temp_c", y = "Frequency")+
theme_classic()
d <- ggplot(halo, aes(tiderange_3))+
geom_histogram(binwidth = 0.5, color = "#996543", fill="white", alpha = 0.7) +
labs(title = "Tidal Range", x = "tiderange_3 (m)", y = "Frequency")+
theme_classic()
e <- ggplot(halo, aes(cell_count_A)) +
geom_histogram(binwidth = 12, color = "steelblue", fill="white", alpha = 0.7) +
labs(title = "Cell Count A", x = "cell_count_A", y = "Frequency")+
theme_classic()
f <- ggplot(halo, aes(chl_a_flu_rfu))+
geom_histogram(binwidth = 0.05, color = "plum", fill="white", alpha = 0.7) +
labs(title = "Chlorophyll A", x = "chl_A (rfu)", y = "Frequency")+
theme_classic()
g <- ggplot(halo, aes(ph))+
geom_histogram(binwidth = 5, color = "tomato", fill="white", alpha = 0.7) +
labs(title = "pH", x = "pH", y = "Frequency")+
theme_classic()
h <- g <- ggplot(halo, aes(wind))+
geom_histogram(binwidth = 2, color = "gray", fill="white", alpha = 0.7) +
labs(title = "Wind Speed", x = "windspeed (mph)", y = "Frequency")+
theme_classic()
i <- ggplot(halo, aes(precip_mm))+
geom_histogram(binwidth = 2, color = "darkblue", fill="white", alpha = 0.7) +
labs(title = "Precipitation", x = "precip (mm)", y = "Frequency")+
theme_classic()
ggarrange(a, b, c, d, e, f, g, h, i)
#pull out just the aquatroll data
nitrates <- halo[34]
salinity <- halo[38]
pH <- halo[42]
chl_a <- halo[45]
temp <- halo[46]
ambient <- halo[11]
tidal_range_calc_1 <- halo[18]
baro_pressure <- halo[47]
cell_count <- halo[8]
precipitation <- halo[13]
tide_range_m <- halo[20]
windspeed <- halo[21]
winddirection <- halo[22]
lunar_illumination <- halo[31]
#put it all together
aqua1 <- cbind(cell_count, nitrates, salinity, pH, chl_a, temp, ambient, tidal_range_calc_1, baro_pressure)
others <- cbind(cell_count, precipitation, tide_range_m, windspeed, winddirection, lunar_illumination)
ggpairs(aqua1)
ggpairs(others)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
I took just the wind direction and cell count columns, ran them through poisson, and found no statistical significance between the two data types.
quicksummary <- halo %>%
summarise(across(everything(), list(min = ~min(., na.rm = TRUE), max = ~max(., na.rm = TRUE))))
#place into table
summary_table <- halo %>%
summarise(across(everything(), list(min = ~min(., na.rm = TRUE), max = ~max(., na.rm = TRUE)))) %>%
kable("html") %>%
kable_styling(full_width = FALSE)
a <- halo[22]
b<- log(halo[8]+1)
just_wind <- data.frame(a,b)
#does wind direction have anything to do with this?
ggplot(just_wind, aes(wind_direction, cell_count_A, color=wind_direction))+
geom_boxplot()
M1 <- glm(cell_count_A ~ wind+wind_direction, data = halo, family = "poisson")
anova_winddirection_model <- anova(M1, test = "Chi")
anova_winddirection_model
## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: cell_count_A
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 88 1884.6
## wind 1 154.89 87 1729.7 < 2.2e-16 ***
## wind_direction 8 515.25 79 1214.5 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Assuming 'model_poisson' is your Poisson regression model
residual_deviance <- residuals(M1, type = "deviance")
df_residual_deviance <- df.residual(M1)
# Calculate ratio of residual deviance to degrees of freedom
(M1$null.deviance - M1$deviance)/M1$null.deviance * 100
## [1] 35.55907
# Because the overdispersion ratio is greater than 1, consider negative binomial
#new data frame with specific parameters to determine correlations
Cells <- sample[17]
TidalRange <- sample[14]
TideatSample <- sample[9]
WindSpeed <- sample[15]
WindDirection <- sample[16]
LunarDistance <- sample[27]
LunarIllumination <- sample[25]
Nitrates <- sample[28]
Salinity <- sample[32]
pH <- sample[36]
ORP <- sample[38]
ChlA <- sample[39]
WaterTemp <- sample[40]
Week <- sample[50]
#new data frame
forggpairs1 <- cbind(Cells, WindSpeed, WaterTemp, Week)
forggpairs2 <- cbind(Cells, LunarDistance, LunarIllumination, Week)
forggpairs3 <- cbind(Cells, Nitrates, Salinity, Week)
forggpairs4 <- cbind(Cells, pH, ORP, ChlA, Week)
forggpairs5 <- cbind(Cells, TidalRange, TideatSample, Week)
# sample 43 to sample 91 contain the weeks with the most cell count changes
forggpairs1 <- forggpairs1[43:91,]
forggpairs2 <- forggpairs2[43:91,]
forggpairs3 <- forggpairs3[43:91,]
forggpairs4 <- forggpairs4[43:91,]
forggpairs5 <- forggpairs5[43:91,]
ggpairs(forggpairs1,
aes(color=Week, alpha = 0.5),
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs2,
aes(color=Week, alpha = 0.5),
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs3,
aes(color=Week, alpha = 0.5),
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs4,
aes(color=Week, alpha = 0.5),
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs5,
aes(color=Week, alpha = 0.5),
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ZoomtoBloom <- read.csv("ZoomtoBloom.csv")
Cells <- ZoomtoBloom[8]
TidalRange <- ZoomtoBloom[19]
TideatSample <- ZoomtoBloom[14]
WindSpeed <- ZoomtoBloom[21]
WindDirection <- ZoomtoBloom[22]
LunarDistance <- ZoomtoBloom[31]
LunarIllumination <- ZoomtoBloom[29]
Nitrates <- ZoomtoBloom[32]
Salinity <- ZoomtoBloom[36]
pH <- ZoomtoBloom[40]
ORP <- ZoomtoBloom[42]
ChlA <- ZoomtoBloom[43]
WaterTemp <- ZoomtoBloom[44]
Week <- ZoomtoBloom[53]
#new data frame
forggpairs1 <- cbind(Cells, WindSpeed, WaterTemp, Week)
forggpairs2 <- cbind(Cells, LunarDistance, LunarIllumination, Week)
forggpairs3 <- cbind(Cells, Nitrates, Salinity, Week)
forggpairs4 <- cbind(Cells, pH, ORP, ChlA, Week)
forggpairs5 <- cbind(Cells, TidalRange, TideatSample, Week)
ggpairs(forggpairs1,
aes(color=NewWeek, alpha = 0.5),
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs2,
aes(color=NewWeek, alpha = 0.5),
cor="spearman",
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs3,
aes(color=NewWeek, alpha = 0.5),
cor="spearman",
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs4,
aes(color=NewWeek, alpha = 0.5),
cor="spearman",
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)
ggpairs(forggpairs5,
aes(color=NewWeek, alpha = 0.5),
cor="spearman",
upper = list(continuous = wrap("cor", size = 2.5)),
lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)),
progress = F)