Intro:

This document is a continuation of the previous parts. The treatment free survival in this document is defined as the time to the first curative treatment (RP/RT). We will model the :

  1. Effect of Time to curative treatment (rp+rt) on Time to relapse from curative treatment.

    1. In this case 1 in the tfs_status means either rp or rt occurred.

    2. and tfs_status = 0 means non of them occured

  2. Effect of Time to specific curative treatment (rp or rt) on Time to relapse from any curative treatment.

    1. These are 2 different models, in the first one status is = 1 if treatment is rp and 0 otherwise, and the second model status is =1 if treatment is rt and 0 otherwise.

    2. So this data should contain only RP and RT.

  3. Effect of Time to specific curative treatment (rp or rt) on Time to relapse from specific curative treatment.

    1. These are also 2 models, as the previous ones, but in these models we’re assessing the effect of time to specific type of curative treatment(let’s say RT) on the risk of recurrence from that type of treatment (RT).

It is important to keep in mind that in the joint survival model, patients are on risk of relapse only if they get a curative treatment , this is why we use left truncation to take into account the fact the the recurrence risk starts at treatment time (truncation = tfs_time). Also, as the INLAjoint survival function tries to match the TFS data with RFS data, it’s crucial to keep the RFS patients with no treatment (tfs_status = 0 and rfs_status = 0) at the end of the data. These patients are important for the first model (represent the censored ones) but they aren’t important for the second model (no treatment = no risk for bcr). Moreover, in order for the INLAjoint survival function to work properly, time to event must be greater then 0 (tfs_time >0andrfs_time>0).

We will try simpler models for PSA data, the first one is a simple linear model (y=ax+b, y:psa ; x=time_to_psa) . this will give us a simple linear model, that only captures the trend.

Next, we will try splines, 2 and 3 splines to capture to PSA variation and give the model more freedom. Later we can also combine quadratic and cubic functions (f1:y=x*x and f2:y=x*x*x). It would be interesting to try the combination between linear + cubic.

Keep in mind that reference in factors is important.

Libraries

library(readr)
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
library(INLA)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## Loading required package: sp
## This is INLA_24.02.09 built 2024-02-09 03:43:24 UTC.
##  - See www.r-inla.org/contact-us for how to get help.
##  - List available models/likelihoods/etc with inla.list.models()
##  - Use inla.doc(<NAME>) to access documentation
#inla.update(testing=TRUE)
library(INLAjoint)
## Package 'INLAjoint' version 24.2.5
## Type 'citation("INLAjoint")' for citing this R package in publications.
library(splines)

Importing data

surv_long_ <- read.csv("processed/surv_long_.csv")
# We can remove the following after getting the new treatment data
# The new treatment data is supposed to contain RP or RT when status=1 and UNK when status=0

# Now we filter the available data
survlong_rprt <- surv_long_[surv_long_$tx1_type %in% c('rp','radio','tfs-unk'),]

# Rename attributes
names(survlong_rprt)[names(survlong_rprt) == "tx1_type"] <- "tfs_tx"
names(survlong_rprt)[names(survlong_rprt) == "after_tx"] <- "drfs_tx"

# Change values
survlong_rprt$tfs_tx[survlong_rprt$tfs_tx %in% c('radio')] <- 'rt'
survlong_rprt$tfs_tx[survlong_rprt$tfs_tx %in% c('tfs-unk')] <- 'unk'
survlong_rprt$drfs_tx[survlong_rprt$drfs_tx %in% c('bcr-unk')] <- 'unk'

# There shouldn't be any time to event = 0 (checked status 0, no time 0, good!) , 
# drfs_time min = 1 , good!
survlong_rprt$tfs_time[(survlong_rprt$tfs_status == 1) & (survlong_rprt$tfs_time == 0)] <- 0.5

Functions

reassigning_ids <- function(data){
  id_rle <- rle(data$id)
  new_id <- rep(seq_along(id_rle$lengths), id_rle$lengths)  
  data$id <- new_id
  return(data)
}

bf_sampling <- function(data, sample_size=0.3){
  #data <- survlong_rprt
  #sample_size <- 1
  # Uncomment when needed, Sampling
  unique_ids <- unique(data$id)
  sample_size <- round(sample_size * length(unique_ids))
  
  # Sample X.% of the unique IDs
  sampled_ids <- sample(unique_ids, sample_size, replace = FALSE)
  
  # Subset the data based on sampled IDs
  sampled_data <- data[data$id %in% sampled_ids, ]
  
  # Factors
  sampled_data$mri <- as.factor(sampled_data$mri)
  sampled_data$grade_group <- as.factor(sampled_data$grade_group)
  sampled_data$bx_age <- as.factor(sampled_data$bx_age)
  sampled_data$tfs_status <- as.factor(sampled_data$tfs_status)
  sampled_data$drfs_status <- as.factor(sampled_data$drfs_status)
  sampled_data$drfs_tx <- as.factor(sampled_data$drfs_tx)
  sampled_data$tfs_tx <- as.factor(sampled_data$tfs_tx)
  
  # Order factors
  sampled_data$tfs_tx <- factor(sampled_data$tfs_tx, levels = c('rt', 'rp', 'unk'))
  sampled_data$drfs_tx <- factor(sampled_data$drfs_tx, levels = c('rt', 'rp', 'unk'))
  
  # Set reference 
  sampled_data$tfs_tx <- relevel(sampled_data$tfs_tx, ref = "rt")
  sampled_data$drfs_tx <- relevel(sampled_data$drfs_tx, ref = "rt")
  
  # Remove Nas
  sampled_data <- sampled_data[!is.na(sampled_data$time_to_psa),]
  
  # Reassigning ID
  # We have to do it here, as all will be reordered after the previous cmd
  # -> Calculate run-length encoding of the original id column
  id_rle <- rle(sampled_data$id)
  
  # -> Generate a sequence of IDs based on the lengths of runs in the original id column
  new_id <- rep(seq_along(id_rle$lengths), id_rle$lengths)
  
  # -> Reassign the new IDs to the id column in sampled_data
  sampled_data$id <- new_id
  sampled_data <- sampled_data[with(sampled_data, order(id)), ]
  
  # Order it by :
  # 1- Type of treatment at recurrence drfs_tx, so the unk ones will be at the end.
  # 2- Time to psa , so the INLAjoint Long model works properly
  # We already have PSA at t=0 for all these patients from part 1
  #sampled_data <- sampled_data[with(sampled_data, order(drfs_tx, time_to_psa)), ]
  sampled_data <- sampled_data[order(sampled_data$drfs_tx, 
                                     sampled_data$id, 
                                     sampled_data$time_to_psa), ]
  # Quick reordering
  id_rle <- rle(sampled_data$id)
  new_id <- rep(seq_along(id_rle$lengths), id_rle$lengths)
  sampled_data$id <- new_id
  
  
  return(sampled_data)
}

interp <- function(jm){
  n_sample <- 1e4 # number of samples for uncertainty quantification
  smp_H <- inla.hyperpar.sample(n_sample, jm) # sample values for frailty and association parameters
  sigma <- sqrt(1/smp_H[, which(colnames(smp_H)=="Precision for IDIntercept_S1")]) # sampled sd of frailty
  assoc <- smp_H[, which(colnames(smp_H)=="Beta for IDIntercept_S1_S2")] # sampled association parameter
  SMP <- sapply(sigma, function(x) rnorm(1e3, mean = 0, sd = x)) # sample realizations of each frailty
  SMP2 <- rbind(sigma, SMP) # add sigmas there to vectorize computations and avoid loop
  mean_low15 <- apply(SMP, 2, function(x) mean(x[-1][x[-1]<(-x[1])])) # mean frailty deviation for lowest 15%
  mean_up15 <- apply(SMP, 2, function(x) mean(x[-1][x[-1]>x[1]])) # mean frailty deviation for top 15%
  HR_low15 <- exp(assoc*mean_low15) # hazard ratios for lowest 15% vs. average
  HR_up15 <- exp(assoc*mean_up15) # hazard ratios for top 15% vs. average
  Q_low15 <- quantile(HR_low15, c(0.025, 0.5, 0.975), na.rm=T) # should not have NAs, here it's a bad example on unstable model
  Q_up15 <- quantile(HR_up15, c(0.025, 0.5, 0.975), na.rm=T)
  
  # Interpretation:
  res_l15 <- paste0("Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the lowest risk of receiving treatment (i.e., longest time-to-treatment) is associated to a ", round(Q_low15[2], 2), " [", round(Q_low15[1], 2), ",", round(Q_low15[3], 2), "] increased risk of recurrence (i.e., shorter time-to-recurrence) compared to the average individual.")
  
  res_u15 <- paste0("Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the highest risk of receiving treatment (i.e., shortest time-to-treatment) is associated to a ", round(Q_up15[2], 2), " [", round(Q_up15[1], 2), ",", round(Q_up15[3], 2), "] decreased risk of recurrence (i.e., longer time-to-recurrence) compared to the average individual.")
  
  return(c(res_l15, res_u15))
}

Modeling

Sampling

# Sampling
s_survlong_rprt <- bf_sampling(survlong_rprt, 0.5)

# Surv data to be used in the latter join model 
s_surv_rprt <- s_survlong_rprt[!duplicated(s_survlong_rprt$id), ]

summary(s_survlong_rprt)
##        id         bx_age      mri       grade_group tfs_tx     
##  Min.   :   1   <60  :14856   0:67618   1:29181     rt :36149  
##  1st Qu.:1076   >70  :24079   1: 8503   2:21484     rp :23482  
##  Median :2103   60-70:37186             3:14683     unk:16490  
##  Mean   :2149                           4: 5909                
##  3rd Qu.:3196                           5: 4864                
##  Max.   :4512                                                  
##    tx_date             tfs_time      tfs_status drfs_tx       drfs_time     
##  Length:76121       Min.   :  0.50   0:16490    rt :36149   Min.   :  1.00  
##  Class :character   1st Qu.:  3.00   1:59631    rp :23482   1st Qu.: 44.00  
##  Mode  :character   Median :  6.00              unk:16490   Median : 78.00  
##                     Mean   : 32.16                          Mean   : 85.87  
##                     3rd Qu.: 41.00                          3rd Qu.:121.00  
##                     Max.   :259.00                          Max.   :284.00  
##  drfs_status  psa_results         psa_date          time_to_psa     
##  0:53416     Min.   :    0.00   Length:76121       Min.   :-242.00  
##  1:22705     1st Qu.:    0.05   Class :character   1st Qu.:   3.00  
##              Median :    1.05   Mode  :character   Median :  26.00  
##              Mean   :   12.19                      Mean   :  33.63  
##              3rd Qu.:    5.56                      3rd Qu.:  63.00  
##              Max.   :76800.00                      Max.   : 284.00  
##     log_psa        
##  Min.   : 0.00000  
##  1st Qu.: 0.04879  
##  Median : 0.71784  
##  Mean   : 1.06614  
##  3rd Qu.: 1.88099  
##  Max.   :11.24897

M-1: Time to Treatment (SURV)

# No covariates
M1 <- joint(formSurv =list(inla.surv(time = tfs_time, event = tfs_status) ~ -1),
            basRisk = c("rw2"),  
            dataSurv = list(s_surv_rprt))
summary(M1)
## 
## Survival outcome
##                            mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance) 0.9693 0.3181     0.4951   0.9189     1.7368
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -18310.98                             -18310.98 
## 
## Deviance Information Criterion:  36538.26
## Widely applicable Bayesian information criterion:  36542.92
## Computation time: 1.81 seconds
plot(M1)
## $Baseline

## 
## attr(,"class")
## [1] "plot.INLAjoint" "list"
# With Covariates
M1_cov <- joint(formSurv =list(inla.surv(time = tfs_time, event = tfs_status) ~ bx_age+mri+grade_group+tfs_tx),
            basRisk = c("rw2"),  
            dataSurv = list(s_surv_rprt))
summary(M1_cov)
## 
## Survival outcome
##                             mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)  0.5157 0.2054     0.2266   0.4780     1.0257
## bx_age70                  0.2391 0.0331     0.1741   0.2391     0.3041
## bx_age6070                0.0376 0.0300    -0.0213   0.0376     0.0964
## mri1                      0.4453 0.0345     0.3776   0.4453     0.5130
## grade_group2              0.5104 0.0287     0.4542   0.5104     0.5666
## grade_group3              0.7391 0.0320     0.6763   0.7391     0.8019
## grade_group4              0.6102 0.0444     0.5232   0.6102     0.6973
## grade_group5              0.8813 0.0464     0.7904   0.8813     0.9722
## tfs_txrp                  0.6602 0.0268     0.6076   0.6602     0.7127
## tfs_txunk                -2.1442 0.0365    -2.2158  -2.1442    -2.0727
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -14345.67                             -14345.67 
## 
## Deviance Information Criterion:  28534.59
## Widely applicable Bayesian information criterion:  28546.39
## Computation time: 3.07 seconds
plot(M1_cov)
## $Outcomes
## $Outcomes$S1

## 
## 
## $Baseline

## 
## attr(,"class")
## [1] "plot.INLAjoint" "list"

M-2: Time to Recurrence (SURV)

# No covariates
M2 <- joint(formSurv =list(inla.surv(time = drfs_time, event = drfs_status) ~ -1),
            basRisk = c("rw2"),  
            dataSurv = list(s_surv_rprt))
summary(M2)
## 
## Survival outcome
##                            mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance) 0.2648 0.1243     0.0991   0.2394     0.5805
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -18427.11                             -18427.11 
## 
## Deviance Information Criterion:  36788.79
## Widely applicable Bayesian information criterion:  36791.31
## Computation time: 2.2 seconds
plot(M2)
## $Baseline

## 
## attr(,"class")
## [1] "plot.INLAjoint" "list"
# With Covariates
M2_cov <- joint(formSurv =list(inla.surv(time = drfs_time, event = drfs_status) ~ bx_age+mri+grade_group+tfs_tx+tfs_time+drfs_tx),
            basRisk = c("rw2"),  
            dataSurv = list(s_surv_rprt))
summary(M2_cov)
## 
## Survival outcome
##                             mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)  0.2996 0.1364     0.1156   0.2724     0.6444
## bx_age70                  0.2669 0.0401     0.1882   0.2669     0.3455
## bx_age6070                0.0501 0.0359    -0.0203   0.0501     0.1205
## mri1                      0.7919 0.0447     0.7043   0.7919     0.8795
## grade_group2              0.0996 0.0345     0.0319   0.0996     0.1673
## grade_group3              0.3159 0.0384     0.2406   0.3159     0.3912
## grade_group4              0.4556 0.0512     0.3552   0.4556     0.5559
## grade_group5              0.9199 0.0521     0.8177   0.9199     1.0221
## tfs_txrp                  0.2147 7.0710   -13.6509   0.2147    14.0803
## tfs_txunk                 0.6850 7.0711   -13.1807   0.6850    14.5506
## tfs_time                 -0.0162 0.0005    -0.0171  -0.0162    -0.0152
## drfs_txrp                 0.2147 7.0710   -13.6509   0.2147    14.0803
## drfs_txunk                0.6850 7.0711   -13.1807   0.6850    14.5506
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -17130.59                             -17130.59 
## 
## Deviance Information Criterion:  34092.34
## Widely applicable Bayesian information criterion:  34101.34
## Computation time: 3.88 seconds
plot(M2_cov)
## $Outcomes
## $Outcomes$S1

## 
## 
## $Baseline

## 
## attr(,"class")
## [1] "plot.INLAjoint" "list"

JM-1: Treatment.X.Recurrence (SURV.SURV)

# Because of:
#            1 - the truncation time must be only related to RP/RT , and
#            2 - the treatments in the first surv model are not all RP/RT
# We have to make sure that those patients with first treatment as NOT a curative treatment (RP/RT) 
# should be at the end of the dataframe. (to avoid mismatch)
#surv <- surv[with(surv, order(tx1_type)), ]


# No covariates
JM1 <- joint(formSurv=list(inla.surv(time = tfs_time, event = tfs_status) ~ -1+(1|id),
                           inla.surv(time = drfs_time, event = drfs_status, truncation=tfs_time) ~ -1), 
             id="id",
             basRisk=c("rw2", "rw2"), assocSurv=TRUE, NbasRisk = 30,
             dataSurv = list(s_surv_rprt))
## Warning in joint(formSurv = list(inla.surv(time = tfs_time, event = tfs_status)
## ~ : Stupid local search strategy used: This can be a sign of a ill-defined
## model and/or non-informative data.
summary(JM1)
## 
## Survival outcome (S1)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S1 0.9067 0.1222     0.7148   0.8893     1.1913
## 
## Frailty term variance (S1)
##                 mean    sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1 2.048 0.089     1.8945   2.0399     2.2424
## 
## Survival outcome (S2)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S2 0.0608 0.0077     0.0471   0.0603     0.0772
## 
## Association survival - survival
##                      mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1_S2 -0.6063 0.0176    -0.6424  -0.6058     -0.573
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                              -36921.4                              -36921.4 
## 
## Deviance Information Criterion:  70589.07
## Widely applicable Bayesian information criterion:  72489.89
## Computation time: 10.3 seconds
plot(JM1)$Baseline+scale_y_log10()

# With Covariates
JM1_cov <- joint(formSurv=list(inla.surv(time = tfs_time , event = tfs_status) ~ bx_age+mri+grade_group+tfs_tx+(1|id),
                               inla.surv(time = drfs_time, event = drfs_status) ~ bx_age+mri+grade_group+tfs_tx+tfs_time+drfs_tx), id="id",
             basRisk=c("rw2", "rw2"), assocSurv=TRUE, NbasRisk = 30,
             
             dataSurv = list(s_surv_rprt))
summary(JM1_cov)
## 
## Survival outcome (S1)
##                                mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S1  1.3340 0.4119     0.6640   1.2920     2.2671
## bx_age70_S1                  0.2966 0.0382     0.2216   0.2966     0.3715
## bx_age6070_S1                0.0607 0.0346    -0.0071   0.0607     0.1285
## mri1_S1                      0.5342 0.0398     0.4562   0.5342     0.6123
## grade_group2_S1              0.4165 0.0331     0.3515   0.4165     0.4815
## grade_group3_S1              0.6053 0.0374     0.5320   0.6053     0.6785
## grade_group4_S1              0.5302 0.0513     0.4295   0.5302     0.6309
## grade_group5_S1              0.7454 0.0535     0.6405   0.7454     0.8503
## tfs_txrp_S1                  0.5082 0.0312     0.4469   0.5082     0.5694
## tfs_txunk_S1                -2.3560 0.0423    -2.4390  -2.3560    -2.2733
## 
## Frailty term variance (S1)
##                  mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1 0.1831 0.0171     0.1522   0.1822     0.2193
## 
## Survival outcome (S2)
##                                mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S2  1.6888 0.3444     1.1104   1.6560     2.4606
## bx_age70_S2                  0.1300 0.2078    -0.2779   0.1302     0.5372
## bx_age6070_S2               -0.0403 0.1880    -0.4091  -0.0403     0.3283
## mri1_S2                      1.7378 0.2176     1.3113   1.7378     2.1646
## grade_group2_S2             -0.0738 0.1796    -0.4262  -0.0737     0.2782
## grade_group3_S2              0.4976 0.2050     0.0955   0.4976     0.8994
## grade_group4_S2              1.4930 0.2826     0.9390   1.4929     2.0476
## grade_group5_S2              2.8737 0.2930     2.2996   2.8735     3.4487
## tfs_txrp_S2                  0.4240 7.0716   -13.4427   0.4240    14.2906
## tfs_txunk_S2                 4.6636 7.0723    -9.2044   4.6636    18.5316
## tfs_time_S2                 -0.1401 0.0031    -0.1462  -0.1400    -0.1341
## drfs_txrp_S2                 0.4240 7.0716   -13.4427   0.4240    14.2906
## drfs_txunk_S2                4.6636 7.0723    -9.2044   4.6636    18.5316
## 
## Association survival - survival
##                       mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1_S2 -10.8992 0.2987   -11.4681 -10.9054   -10.2926
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -35180.23                             -35180.23 
## 
## Deviance Information Criterion:  61120.48
## Widely applicable Bayesian information criterion:  64888.68
## Computation time: 13.56 seconds
plot(JM1_cov)$Baseline+scale_y_log10()

# Survival curves
onePatient <- s_surv_rprt[1, ]
P <- predict(M1, onePatient, id="id", horizon=300, surv=TRUE)$PredS
## Warning in predict.INLAjoint(M1, onePatient, id = "id", horizon = 300, surv =
## TRUE): The fitted model has baseline risk information up until value 259 for
## survival outcome 1. Since you ask for prediction at horizon 300 I will assume
## constant baseline hazard beyond the maximum available value. Alternatively, you
## can use baselineHaz='smooth' to use splines to predict the baseline hazard (for
## each sample). Alternatively, adding 'horizon' in the control options of the
## inla() call allows to extend the baseline beyond the last observed event time
## (linear extension, less flexible than the smooth method).
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1 on PID: 71801
## Warning in assign(paste0(object$dataSurv), SdataPred): only the first element
## is used as variable name
## Warning in assign(paste0(object$dataSurv), SdataPred): only the first element
## is used as variable name
## Computing survival predictions for individual 1
# plot survival curve for the two time to event outcomes
plot(P$time, P$Surv_quant0.5, type="l", lwd=2, ylim=c(0, 1), xlab="time", ylab="survival probability")
lines(P$time, P$Surv_quant0.025, lty=2)
lines(P$time, P$Surv_quant0.975, lty=2)
# add observed event times
# sapply(surv_data[surv_data$tfs_status==1, "tfs_time"], function(x) abline(v=x, lty=3, lwd=0.5))

P2 <- predict(M2, onePatient, id="id", horizon=300, surv=TRUE)$PredS
## Warning in predict.INLAjoint(M2, onePatient, id = "id", horizon = 300, surv =
## TRUE): The fitted model has baseline risk information up until value 284 for
## survival outcome 1. Since you ask for prediction at horizon 300 I will assume
## constant baseline hazard beyond the maximum available value. Alternatively, you
## can use baselineHaz='smooth' to use splines to predict the baseline hazard (for
## each sample). Alternatively, adding 'horizon' in the control options of the
## inla() call allows to extend the baseline beyond the last observed event time
## (linear extension, less flexible than the smooth method).
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1 on PID: 71801
## Warning in assign(paste0(object$dataSurv), SdataPred): only the first element
## is used as variable name

## Warning in assign(paste0(object$dataSurv), SdataPred): only the first element
## is used as variable name
## Computing survival predictions for individual 1
lines(P2$time, P2$Surv_quant0.5, lwd=2, col=2)
lines(P2$time, P2$Surv_quant0.025, lty=2, col=2)
lines(P2$time, P2$Surv_quant0.975, lty=2, col=2)
# sapply(surv_data[surv_data$drfs_time==1, "drfs_time"], function(x) abline(v=x, lty=3, lwd=0.5, col=2))
legend("topright", c("Treatment", "Relapse"), lwd=2, col=1:2)

M-3: Time to PSA (LONG)

Linear

# First model for longitudinal marker PSA
M3 <- joint(formLong=log_psa ~ time_to_psa + (1 + time_to_psa | id), 
             timeVar="time_to_psa",
             id="id", 
             family="gaussian", 
             control=list(int.strategy="eb"), # To make calculation faster, use only the mean for the hyper-parameter distributions
             dataLong=s_survlong_rprt
             )
## Warning in joint(formLong = log_psa ~ time_to_psa + (1 + time_to_psa | id), :
## Stupid local search strategy used: This can be a sign of a ill-defined model
## and/or non-informative data.
summary(M3)
## Longitudinal outcome (gaussian)
##                         mean     sd 0.025quant 0.5quant 0.975quant
## Intercept             1.3014 0.0118     1.2784   1.3014     1.3244
## time_to_psa          -0.0086 0.0004    -0.0094  -0.0086    -0.0079
## Res. err. (variance)  0.4447 0.0024     0.4398   0.4448     0.4493
## 
## Random effects variance-covariance (L1)
##                         mean     sd 0.025quant 0.5quant 0.975quant
## Intercept             0.5543 0.0140     0.5269   0.5544     0.5811
## time_to_psa           0.0006 0.0000     0.0006   0.0006     0.0006
## Intercept:time_to_psa 0.0002 0.0004    -0.0005   0.0001     0.0009
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -90910.24                             -90906.27 
## 
## Deviance Information Criterion:  162109.6
## Widely applicable Bayesian information criterion:  163719.8
## Computation time: 11.34 seconds
# patientID = 25 # pick one
patient_counts <- table(s_survlong_rprt$id)
max_count <- max(patient_counts) # Pick the patient with Max PSA results
patients_with_max_count <- names(patient_counts[patient_counts == max_count])
patientID = patients_with_max_count

ND <- s_survlong_rprt[s_survlong_rprt$id==patientID,]
P1 <- predict(M3, ND, id="id", horizon=max(s_survlong_rprt$time_to_psa))$PredL # Make Linear prediction
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1677 on PID: 71801
# To plot, should run from HRE
plot(P1$time_to_psa, P1$quant0.5, type="l", lwd=2, ylim=range(c(P1$quant0.025, P1$quant0.975)), xlab="time", ylab="log (PSA+1)")
lines(P1$time_to_psa, P1$quant0.025, lty=2)
lines(P1$time_to_psa, P1$quant0.975, lty=2)
points(ND$time_to_psa, ND$log_psa, pch=19) # pch=size of the dots

# to HERE 

Splines

# use splines?
NSplines <- ns(s_survlong_rprt$time_to_psa, knots=c(25)) # natural cubic splines , knots, the starting rise time, look at time to psa summary
f1 <- function(x) predict(NSplines, x)[,1] # first basis
f2 <- function(x) predict(NSplines, x)[,2] # second basis
# check splines
curve(f1, xlim=range(s_survlong_rprt$time_to_psa), ylim=c(-1,1))
curve(f2, xlim=range(s_survlong_rprt$time_to_psa), add=T)

# Second joint model for the longitudinal data, this time accounting for all
M3_cov <- joint(formLong=log_psa ~ (f1(time_to_psa) + f2(time_to_psa)) * grade_group+mri+bx_age+drfs_tx + (1 + f1(time_to_psa) + f2(time_to_psa)| id),
             timeVar="time_to_psa",
             id="id", 
             family="gaussian", 
             control=list(int.strategy="eb"), 
             dataLong=s_survlong_rprt
            )
summary(M3_cov)
## Longitudinal outcome (gaussian)
##                                mean     sd 0.025quant 0.5quant 0.975quant
## Intercept                    8.6140 0.4145     7.8016   8.6140     9.4264
## f1time_to_psa              -14.1207 0.6941   -15.4812 -14.1207   -12.7602
## f2time_to_psa               -2.9951 0.2964    -3.5759  -2.9951    -2.4142
## grade_group2                 3.4230 0.6270     2.1941   3.4230     4.6518
## grade_group3                 5.8318 0.7129     4.4345   5.8318     7.2290
## grade_group4                 5.2901 1.0067     3.3170   5.2901     7.2633
## grade_group5                 7.9869 1.1145     5.8025   7.9869    10.1712
## mri1                         0.1197 0.0320     0.0570   0.1197     0.1825
## bx_age70                     0.2431 0.0316     0.1811   0.2431     0.3051
## bx_age6070                   0.1165 0.0290     0.0597   0.1165     0.1733
## drfs_txrp                   -0.5109 0.0267    -0.5632  -0.5109    -0.4586
## drfs_txunk                  -0.1673 0.0275    -0.2213  -0.1673    -0.1134
## f1time_to_psa:grade_group2  -6.8841 1.0499    -8.9418  -6.8841    -4.8264
## f1time_to_psa:grade_group3 -10.8915 1.1925   -13.2287 -10.8915    -8.5542
## f1time_to_psa:grade_group4  -7.9107 1.6771   -11.1978  -7.9107    -4.6237
## f1time_to_psa:grade_group5  -9.3998 1.8454   -13.0168  -9.3998    -5.7829
## f2time_to_psa:grade_group2  -0.5049 0.4543    -1.3954  -0.5049     0.3855
## f2time_to_psa:grade_group3   0.4763 0.5158    -0.5346   0.4763     1.4871
## f2time_to_psa:grade_group4   4.9015 0.7523     3.4269   4.9015     6.3760
## f2time_to_psa:grade_group5  10.4643 0.8533     8.7918  10.4643    12.1367
## Res. err. (variance)         0.3403 0.0014     0.3377   0.3403     0.3433
## 
## Random effects variance-covariance (L1)
##                                  mean      sd 0.025quant  0.5quant 0.975quant
## Intercept                    211.6698  5.8471   200.4594  211.5442   223.3859
## f1time_to_psa                612.0800 16.5756   582.2212  611.1390   647.6566
## f2time_to_psa                104.4675  2.9179    98.3298  104.7137   109.4553
## Intercept:f1time_to_psa     -354.8559  9.8550  -375.1419 -354.4858  -336.6491
## Intercept:f2time_to_psa       65.1665  3.7962    57.6439   65.1025    72.8412
## f1time_to_psa:f2time_to_psa  -72.9334  6.3988   -85.3398  -72.9183   -60.5386
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -84645.17                             -84638.45 
## 
## Deviance Information Criterion:  144162.6
## Widely applicable Bayesian information criterion:  145954.1
## Computation time: 29.01 seconds
# Again, pick one patient (here the same)
ND2 <- s_survlong_rprt[s_survlong_rprt$id==patientID,] # observed vs. fitted for a couple individuals.
P2 <- predict(M3_cov, ND2, id="id", horizon=max(s_survlong_rprt$time_to_psa))$PredL
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1677 on PID: 71801
plot(P2$time_to_psa, P2$quant0.5, type="l", lwd=2, ylim=range(c(P2$quant0.025, P2$quant0.975)), xlab="time", ylab="log (PSA+1)")
lines(P2$time_to_psa, P2$quant0.025, lty=2)
lines(P2$time_to_psa, P2$quant0.975, lty=2)
points(ND$time_to_psa, ND$log_psa, pch=19)

#### Linear + account for all

# use Linear
NSplines <- ns(s_survlong_rprt$time_to_psa, knots=c(25)) # natural cubic splines , knots, the starting rise time, look at time to psa summary

# Second joint model for the longitudinal data, this time accounting for all
M3_cov <- joint(formLong=log_psa ~ (time_to_psa) * grade_group+mri+bx_age+drfs_tx + (1 + time_to_psa| id),
             timeVar="time_to_psa",
             id="id", 
             family="gaussian", 
             control=list(int.strategy="eb"), 
             dataLong=s_survlong_rprt
            )
summary(M3_cov)
## Longitudinal outcome (gaussian)
##                             mean     sd 0.025quant 0.5quant 0.975quant
## Intercept                 1.4095 0.0311     1.3485   1.4095     1.4704
## time_to_psa              -0.0077 0.0006    -0.0089  -0.0077    -0.0064
## grade_group2             -0.2555 0.0273    -0.3089  -0.2555    -0.2020
## grade_group3             -0.2881 0.0311    -0.3490  -0.2881    -0.2272
## grade_group4             -0.2412 0.0429    -0.3252  -0.2412    -0.1571
## grade_group5              0.3069 0.0445     0.2198   0.3069     0.3941
## mri1                      0.1627 0.0317     0.1005   0.1627     0.2249
## bx_age70                  0.2825 0.0313     0.2211   0.2825     0.3439
## bx_age6070                0.1372 0.0287     0.0809   0.1372     0.1936
## drfs_txrp                -0.4516 0.0264    -0.5034  -0.4516    -0.3999
## drfs_txunk               -0.0992 0.0273    -0.1527  -0.0992    -0.0458
## time_to_psa:grade_group2 -0.0034 0.0009    -0.0052  -0.0034    -0.0015
## time_to_psa:grade_group3 -0.0041 0.0011    -0.0062  -0.0041    -0.0020
## time_to_psa:grade_group4  0.0031 0.0015     0.0001   0.0031     0.0061
## time_to_psa:grade_group5  0.0102 0.0017     0.0069   0.0102     0.0134
## Res. err. (variance)      0.4452 0.0024     0.4403   0.4452     0.4498
## 
## Random effects variance-covariance (L1)
##                          mean     sd 0.025quant 0.5quant 0.975quant
## Intercept              0.4616 0.0124     0.4380   0.4615     0.4865
## time_to_psa            0.0006 0.0000     0.0006   0.0006     0.0006
## Intercept:time_to_psa -0.0009 0.0005    -0.0020  -0.0008    -0.0002
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -90577.47                             -90573.51 
## 
## Deviance Information Criterion:  162124.8
## Widely applicable Bayesian information criterion:  163671.6
## Computation time: 13.86 seconds
# Again, pick one patient (here the same)
ND2 <- s_survlong_rprt[s_survlong_rprt$id==patientID,] # observed vs. fitted for a couple individuals.
P2 <- predict(M3_cov, ND2, id="id", horizon=max(s_survlong_rprt$time_to_psa))$PredL
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1677 on PID: 71801
plot(P2$time_to_psa, P2$quant0.5, type="l", lwd=2, ylim=range(c(P2$quant0.025, P2$quant0.975)), xlab="time", ylab="log (PSA+1)")
lines(P2$time_to_psa, P2$quant0.025, lty=2)
lines(P2$time_to_psa, P2$quant0.975, lty=2)
points(ND$time_to_psa, ND$log_psa, pch=19)

#### Quadratic

# use 

f1 <- function(x) x*x
#f2 <- function(x) predict(NSplines, x)[,2] # second basis
# check splines
curve(f1, xlim=range(s_survlong_rprt$time_to_psa))

#curve(f2, xlim=range(s_survlong_rprt$time_to_psa), add=T)

# Second joint model for the longitudinal data, this time accounting for all
M3_cov <- joint(formLong=log_psa ~ (time_to_psa + f1(time_to_psa)) * grade_group+mri+bx_age+drfs_tx + (1 + time_to_psa + f1(time_to_psa)| id),
             timeVar="time_to_psa",
             id="id", 
             family="gaussian", 
             control=list(int.strategy="eb"), 
             dataLong=s_survlong_rprt
            )
summary(M3_cov)
## Longitudinal outcome (gaussian)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Intercept                   1.6126 0.0307     1.5524   1.6126     1.6727
## time_to_psa                -0.0190 0.0010    -0.0210  -0.0190    -0.0171
## f1time_to_psa               0.0000 0.0004    -0.0008   0.0000     0.0007
## grade_group2               -0.2041 0.0281    -0.2592  -0.2041    -0.1490
## grade_group3               -0.2073 0.0320    -0.2701  -0.2073    -0.1446
## grade_group4               -0.1665 0.0443    -0.2532  -0.1665    -0.0797
## grade_group5                0.3497 0.0459     0.2597   0.3497     0.4398
## mri1                        0.1254 0.0307     0.0652   0.1254     0.1856
## bx_age70                    0.2684 0.0302     0.2092   0.2684     0.3275
## bx_age6070                  0.1216 0.0276     0.0675   0.1216     0.1758
## drfs_txrp                  -0.5045 0.0254    -0.5543  -0.5045    -0.4547
## drfs_txunk                 -0.1710 0.0264    -0.2227  -0.1710    -0.1193
## time_to_psa:grade_group2   -0.0125 0.0015    -0.0154  -0.0125    -0.0095
## time_to_psa:grade_group3   -0.0175 0.0017    -0.0209  -0.0175    -0.0142
## time_to_psa:grade_group4   -0.0170 0.0024    -0.0218  -0.0170    -0.0123
## time_to_psa:grade_group5   -0.0248 0.0027    -0.0301  -0.0248    -0.0195
## f1time_to_psa:grade_group2  0.0001 0.0006    -0.0010   0.0001     0.0012
## f1time_to_psa:grade_group3  0.0002 0.0006    -0.0010   0.0002     0.0015
## f1time_to_psa:grade_group4  0.0005 0.0009    -0.0013   0.0005     0.0022
## f1time_to_psa:grade_group5  0.0023 0.0009     0.0005   0.0023     0.0041
## Res. err. (variance)        0.3161 0.0018     0.3126   0.3161     0.3196
## 
## Random effects variance-covariance (L1)
##                              mean     sd 0.025quant 0.5quant 0.975quant
## Intercept                  0.4921 0.0132     0.4669   0.4922     0.5192
## time_to_psa                0.0014 0.0000     0.0013   0.0014     0.0014
## f1time_to_psa              0.0002 0.0000     0.0002   0.0002     0.0002
## Intercept:time_to_psa     -0.0093 0.0006    -0.0107  -0.0093    -0.0082
## Intercept:f1time_to_psa    0.0006 0.0003     0.0001   0.0005     0.0011
## time_to_psa:f1time_to_psa  0.0000 0.0000    -0.0001   0.0000     0.0000
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -101178.9                             -101172.2 
## 
## Deviance Information Criterion:  139952.1
## Widely applicable Bayesian information criterion:  141615.5
## Computation time: 19.32 seconds
# Again, pick one patient (here the same)
ND2 <- s_survlong_rprt[s_survlong_rprt$id==patientID,] # observed vs. fitted for a couple individuals.
P2 <- predict(M3_cov, ND2, id="id", horizon=max(s_survlong_rprt$time_to_psa))$PredL
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1677 on PID: 71801
plot(P2$time_to_psa, P2$quant0.5, type="l", lwd=2, ylim=range(c(P2$quant0.025, P2$quant0.975)), xlab="time", ylab="log (PSA+1)")
lines(P2$time_to_psa, P2$quant0.025, lty=2)
lines(P2$time_to_psa, P2$quant0.975, lty=2)
points(ND$time_to_psa, ND$log_psa, pch=19)

#### Cubic

# use 

f1 <- function(x) x*x
#f2 <- function(x) predict(NSplines, x)[,2] # second basis
# check splines
curve(f1, xlim=range(s_survlong_rprt$time_to_psa))

#curve(f2, xlim=range(s_survlong_rprt$time_to_psa), add=T)

# Second joint model for the longitudinal data, this time accounting for all
M3_cov <- joint(formLong=log_psa ~ (time_to_psa + f1(time_to_psa)) * grade_group+mri+bx_age+drfs_tx + (1 + time_to_psa + f1(time_to_psa)| id),
             timeVar="time_to_psa",
             id="id", 
             family="gaussian", 
             control=list(int.strategy="eb"), 
             dataLong=s_survlong_rprt
            )
summary(M3_cov)
## Longitudinal outcome (gaussian)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Intercept                   1.6122 0.0307     1.5520   1.6122     1.6723
## time_to_psa                -0.0190 0.0010    -0.0210  -0.0190    -0.0171
## f1time_to_psa               0.0000 0.0004    -0.0008   0.0000     0.0007
## grade_group2               -0.2039 0.0281    -0.2590  -0.2039    -0.1487
## grade_group3               -0.2070 0.0321    -0.2699  -0.2070    -0.1442
## grade_group4               -0.1662 0.0443    -0.2530  -0.1662    -0.0793
## grade_group5                0.3502 0.0460     0.2600   0.3502     0.4403
## mri1                        0.1250 0.0307     0.0648   0.1250     0.1852
## bx_age70                    0.2688 0.0302     0.2096   0.2688     0.3279
## bx_age6070                  0.1219 0.0276     0.0677   0.1219     0.1761
## drfs_txrp                  -0.5051 0.0254    -0.5549  -0.5051    -0.4553
## drfs_txunk                 -0.1701 0.0264    -0.2218  -0.1701    -0.1184
## time_to_psa:grade_group2   -0.0125 0.0015    -0.0154  -0.0125    -0.0095
## time_to_psa:grade_group3   -0.0175 0.0017    -0.0209  -0.0175    -0.0142
## time_to_psa:grade_group4   -0.0170 0.0024    -0.0218  -0.0170    -0.0123
## time_to_psa:grade_group5   -0.0248 0.0027    -0.0302  -0.0248    -0.0195
## f1time_to_psa:grade_group2  0.0001 0.0006    -0.0010   0.0001     0.0012
## f1time_to_psa:grade_group3  0.0002 0.0006    -0.0010   0.0002     0.0015
## f1time_to_psa:grade_group4  0.0005 0.0009    -0.0013   0.0005     0.0022
## f1time_to_psa:grade_group5  0.0023 0.0009     0.0005   0.0023     0.0041
## Res. err. (variance)        0.3161 0.0018     0.3125   0.3161     0.3196
## 
## Random effects variance-covariance (L1)
##                              mean     sd 0.025quant 0.5quant 0.975quant
## Intercept                  0.4930 0.0128     0.4684   0.4927     0.5189
## time_to_psa                0.0014 0.0000     0.0013   0.0014     0.0014
## f1time_to_psa              0.0002 0.0000     0.0002   0.0002     0.0002
## Intercept:time_to_psa     -0.0094 0.0006    -0.0107  -0.0093    -0.0082
## Intercept:f1time_to_psa    0.0002 0.0002    -0.0001   0.0002     0.0006
## time_to_psa:f1time_to_psa  0.0000 0.0000     0.0000   0.0000     0.0000
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -101179.4                             -101172.7 
## 
## Deviance Information Criterion:  139951.8
## Widely applicable Bayesian information criterion:  141617.6
## Computation time: 19.43 seconds
# Again, pick one patient (here the same)
ND2 <- s_survlong_rprt[s_survlong_rprt$id==patientID,] # observed vs. fitted for a couple individuals.
P2 <- predict(M3_cov, ND2, id="id", horizon=max(s_survlong_rprt$time_to_psa))$PredL
## Start sampling
## Sampling done.
## Computing longitudinal predictions for individual 1677 on PID: 71801
plot(P2$time_to_psa, P2$quant0.5, type="l", lwd=2, ylim=range(c(P2$quant0.025, P2$quant0.975)), xlab="time", ylab="log (PSA+1)")
lines(P2$time_to_psa, P2$quant0.025, lty=2)
lines(P2$time_to_psa, P2$quant0.975, lty=2)
points(ND$time_to_psa, ND$log_psa, pch=19)

JM-2: Treatment.X.Recurrence.X.PSA (SURV.SURV.LONG)

Effect post RP

Splines
############################################## FINAL JOINT MODEL

# Get only RP-Caused Recurrence cases
fm_surlong_rp <- s_survlong_rprt[s_survlong_rprt$drfs_tx == 'rp',]
fm_surlong_rp <- reassigning_ids(fm_surlong_rp)
fm_sur_rp <- fm_surlong_rp[!duplicated(fm_surlong_rp$id), ]

# Setup the number of used threads
inla.setOption(num.threads='8:1')

NSplines <- ns(fm_surlong_rp$time_to_psa, knots=c(25)) # natural cubic splines , knots, the starting rise time, look at time to psa summary
f1 <- function(x) predict(NSplines, x)[,1] # first basis
f2 <- function(x) predict(NSplines, x)[,2] # second basis

# Final joint model, combining 2 survival modals and the longitudinal one 
JM2_RP <- joint(formSurv=list(inla.surv(tfs_time, tfs_status) ~ grade_group+mri+bx_age  + (1|id),
                          inla.surv(drfs_time, drfs_status, truncation = tfs_time) ~ grade_group+mri+bx_age),
            formLong=log_psa ~ (f1(time_to_psa) + f2(time_to_psa)) * grade_group+mri+bx_age + (1 + f1(time_to_psa) + f2(time_to_psa)| id),
            id="id",
            timeVar="time_to_psa",
            basRisk=c("rw2", "rw2"), # random walk
            assocSurv=TRUE,
            family="gaussian", 
            assoc=c("CV", "CV"), # what is cv : Current value = risk event at t depends on longit.marker(psa) at t
            control=list(int.strategy="eb"), 
            dataSurv=list(fm_sur_rp), 
            dataLong=fm_surlong_rp
            )
## Warning in joint(formSurv = list(inla.surv(tfs_time, tfs_status) ~ grade_group
## + : Stupid local search strategy used: This can be a sign of a ill-defined
## model and/or non-informative data.
summary(JM2_RP)
## Longitudinal outcome (gaussian)
##                                  mean     sd 0.025quant 0.5quant 0.975quant
## Intercept_L1                   3.1723 0.2572     2.6683   3.1723     3.6763
## f1time_to_psa_L1              -5.6375 0.4170    -6.4548  -5.6375    -4.8201
## f2time_to_psa_L1              -5.2345 0.2268    -5.6791  -5.2345    -4.7899
## grade_group2_L1               -0.1976 0.3458    -0.8754  -0.1976     0.4802
## grade_group3_L1               -0.7161 0.3651    -1.4317  -0.7161    -0.0005
## grade_group4_L1               -0.6153 0.5048    -1.6047  -0.6153     0.3740
## grade_group5_L1               -0.3035 0.5785    -1.4372  -0.3035     0.8303
## mri1_L1                        0.0147 0.0259    -0.0360   0.0147     0.0655
## bx_age70_L1                    0.1052 0.0310     0.0444   0.1052     0.1660
## bx_age6070_L1                  0.0903 0.0235     0.0442   0.0903     0.1363
## f1time_to_psa:grade_group2_L1 -0.2643 0.5588    -1.3595  -0.2643     0.8309
## f1time_to_psa:grade_group3_L1  0.6955 0.5859    -0.4528   0.6955     1.8439
## f1time_to_psa:grade_group4_L1  0.8197 0.7973    -0.7430   0.8197     2.3825
## f1time_to_psa:grade_group5_L1  0.8980 0.9024    -0.8708   0.8980     2.6668
## f2time_to_psa:grade_group2_L1 -0.4232 0.3145    -1.0395  -0.4232     0.1932
## f2time_to_psa:grade_group3_L1 -0.1907 0.3419    -0.8607  -0.1907     0.4794
## f2time_to_psa:grade_group4_L1  0.5876 0.5049    -0.4019   0.5876     1.5771
## f2time_to_psa:grade_group5_L1  2.0700 0.5954     0.9031   2.0700     3.2370
## Res. err. (variance)           0.4761 0.0047     0.4667   0.4762     0.4850
## 
## Random effects variance-covariance (L1)
##                                       mean     sd 0.025quant 0.5quant
## Intercept_L1                        9.6634 0.9925     7.8592   9.6426
## f1time_to_psa_L1                   19.2094 2.1657    15.2558  19.0958
## f2time_to_psa_L1                   14.6321 1.2237    12.4279  14.5778
## Intercept_L1:f1time_to_psa_L1     -13.5350 1.4596   -16.4976 -13.4714
## Intercept_L1:f2time_to_psa_L1      11.8154 0.9036    10.2010  11.8059
## f1time_to_psa_L1:f2time_to_psa_L1 -16.6036 1.3015   -19.3044 -16.5808
##                                   0.975quant
## Intercept_L1                         11.7842
## f1time_to_psa_L1                     23.7223
## f2time_to_psa_L1                     17.1299
## Intercept_L1:f1time_to_psa_L1       -10.8899
## Intercept_L1:f2time_to_psa_L1        13.6813
## f1time_to_psa_L1:f2time_to_psa_L1   -14.2454
## 
## Survival outcome (S1)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S1 0.0804 0.0786     0.0103   0.0564     0.2988
## grade_group2_S1             0.4829 0.0604     0.3645   0.4829     0.6013
## grade_group3_S1             0.6297 0.0672     0.4980   0.6297     0.7614
## grade_group4_S1             0.7777 0.0924     0.5966   0.7777     0.9588
## grade_group5_S1             0.9599 0.1088     0.7467   0.9599     1.1731
## mri1_S1                     0.3603 0.0584     0.2458   0.3603     0.4748
## bx_age70_S1                 0.2061 0.0701     0.0686   0.2061     0.3435
## bx_age6070_S1               0.0952 0.0523    -0.0073   0.0952     0.1978
## 
## Frailty term variance (S1)
##                  mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1 0.0636 0.0543     0.0145   0.0469     0.2146
## 
## Survival outcome (S2)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S2 0.0827 0.0795     0.0144   0.0578     0.3043
## grade_group2_S2             0.3383 0.0717     0.1978   0.3383     0.4787
## grade_group3_S2             0.5594 0.0777     0.4071   0.5594     0.7117
## grade_group4_S2             0.8885 0.1046     0.6834   0.8885     1.0935
## grade_group5_S2             1.4280 0.1222     1.1886   1.4280     1.6675
## mri1_S2                     0.5626 0.0713     0.4229   0.5626     0.7023
## bx_age70_S2                 0.4058 0.0828     0.2436   0.4058     0.5681
## bx_age6070_S2               0.1432 0.0627     0.0203   0.1432     0.2660
## 
## Association longitudinal - survival
##             mean     sd 0.025quant 0.5quant 0.975quant
## CV_L1_S1 -1.5137 0.0834    -1.6785  -1.5136    -1.3499
## CV_L1_S2 -0.8018 0.1601    -1.1753  -0.7802    -0.5698
## 
## Association survival - survival
##                     mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1_S2 1.7344 0.5997     0.6553   1.7043     3.0059
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -70292.20                             -70279.96 
## 
## Deviance Information Criterion:  -4860.322
## Widely applicable Bayesian information criterion:  -7444.014
## Computation time: 59.65 seconds
Linear
# Get only RP-Caused Recurrence cases
fm_surlong_rp <- s_survlong_rprt[s_survlong_rprt$drfs_tx == 'rp',]
fm_surlong_rp <- reassigning_ids(fm_surlong_rp)
fm_sur_rp <- fm_surlong_rp[!duplicated(fm_surlong_rp$id), ]

# Setup the number of used threads
inla.setOption(num.threads='8:1')

# Final joint model, combining 2 survival modals and the longitudinal one 
JM2_RP2 <- joint(formSurv=list(inla.surv(tfs_time, tfs_status) ~ grade_group+mri+bx_age  + (1|id),
                          inla.surv(drfs_time, drfs_status, truncation = tfs_time) ~ grade_group+mri+bx_age),
            formLong=log_psa ~ (time_to_psa) * grade_group+mri+bx_age + (1 + time_to_psa| id),
            id="id",
            timeVar="time_to_psa",
            basRisk=c("rw2", "rw2"), # random walk
            assocSurv=TRUE,
            family="gaussian", 
            assoc=c("CV", "CV"), # what is cv : Current value = risk event at t depends on longit.marker(psa) at t
            control=list(int.strategy="eb"), 
            dataSurv=list(fm_sur_rp), 
            dataLong=fm_surlong_rp
            )
summary(JM2_RP2)
## Longitudinal outcome (gaussian)
##                                mean     sd 0.025quant 0.5quant 0.975quant
## Intercept_L1                 1.0923 0.0296     1.0343   1.0923     1.1504
## time_to_psa_L1              -0.0172 0.0017    -0.0206  -0.0172    -0.0139
## grade_group2_L1             -0.2780 0.0311    -0.3389  -0.2780    -0.2170
## grade_group3_L1             -0.3135 0.0340    -0.3802  -0.3135    -0.2468
## grade_group4_L1             -0.3184 0.0477    -0.4120  -0.3184    -0.2249
## grade_group5_L1             -0.2493 0.0567    -0.3604  -0.2493    -0.1382
## mri1_L1                      0.1140 0.0304     0.0543   0.1140     0.1737
## bx_age70_L1                  0.1074 0.0366     0.0358   0.1074     0.1790
## bx_age6070_L1                0.1028 0.0280     0.0479   0.1028     0.1577
## time_to_psa:grade_group2_L1 -0.0008 0.0023    -0.0053  -0.0008     0.0037
## time_to_psa:grade_group3_L1  0.0001 0.0025    -0.0048   0.0001     0.0050
## time_to_psa:grade_group4_L1  0.0040 0.0036    -0.0030   0.0040     0.0110
## time_to_psa:grade_group5_L1  0.0070 0.0043    -0.0013   0.0070     0.0154
## Res. err. (variance)         0.4881 0.0048     0.4790   0.4880     0.4979
## 
## Random effects variance-covariance (L1)
##                                mean     sd 0.025quant 0.5quant 0.975quant
## Intercept_L1                 0.1371 0.0101     0.1184   0.1367     0.1575
## time_to_psa_L1               0.0010 0.0000     0.0009   0.0010     0.0011
## Intercept_L1:time_to_psa_L1 -0.0025 0.0004    -0.0033  -0.0025    -0.0019
## 
## Survival outcome (S1)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S1 0.0633 0.0523     0.0106   0.0483     0.2067
## grade_group2_S1             0.5056 0.0621     0.3839   0.5056     0.6273
## grade_group3_S1             0.6343 0.0690     0.4991   0.6343     0.7695
## grade_group4_S1             0.8118 0.0945     0.6265   0.8118     0.9971
## grade_group5_S1             1.0067 0.1114     0.7884   1.0067     1.2250
## mri1_S1                     0.3442 0.0602     0.2261   0.3442     0.4622
## bx_age70_S1                 0.1568 0.0722     0.0153   0.1568     0.2984
## bx_age6070_S1               0.0807 0.0543    -0.0257   0.0807     0.1872
## 
## Frailty term variance (S1)
##                  mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1 0.0909 0.0079     0.0771   0.0904      0.108
## 
## Survival outcome (S2)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S2 0.3235 0.3735     0.0406   0.2034     1.3617
## grade_group2_S2             1.2870 0.2251     0.8458   1.2870     1.7282
## grade_group3_S2             1.8993 0.2473     1.4145   1.8993     2.3840
## grade_group4_S2             2.8986 0.3479     2.2167   2.8986     3.5805
## grade_group5_S2             4.4124 0.4136     3.6018   4.4124     5.2230
## mri1_S2                     1.5610 0.2277     1.1147   1.5610     2.0074
## bx_age70_S2                 1.0287 0.2716     0.4965   1.0287     1.5610
## bx_age6070_S2               0.3093 0.2021    -0.0869   0.3093     0.7055
## 
## Association longitudinal - survival
##             mean     sd 0.025quant 0.5quant 0.975quant
## CV_L1_S1 -1.4389 0.0956    -1.6192  -1.4414    -1.2432
## CV_L1_S2 -1.0454 0.2090    -1.4416  -1.0504    -0.6189
## 
## Association survival - survival
##                     mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1_S2 9.8593 0.4227     8.9446   9.8871    10.5943
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -71552.14                             -71542.67 
## 
## Deviance Information Criterion:  -6404.239
## Widely applicable Bayesian information criterion:  -8402.502
## Computation time: 68.75 seconds
More Combinations
# Get only RP-Caused Recurrence cases
fm_surlong_rp <- s_survlong_rprt[s_survlong_rprt$drfs_tx == 'rp',]
fm_surlong_rp <- reassigning_ids(fm_surlong_rp)
fm_sur_rp <- fm_surlong_rp[!duplicated(fm_surlong_rp$id), ]

# Setup the number of used threads
inla.setOption(num.threads='8:1')

f1 <- function(x) x*x

# Final joint model, combining 2 survival modals and the longitudinal one 
JM2_RP3 <- joint(formSurv=list(inla.surv(tfs_time, tfs_status) ~ grade_group+mri+bx_age  + (1|id),
                          inla.surv(drfs_time, drfs_status, truncation = tfs_time) ~ grade_group+mri+bx_age),
            formLong=log_psa ~ (time_to_psa + f1(time_to_psa)) * grade_group+mri+bx_age + (1 + time_to_psa + f1(time_to_psa)| id),
            id="id",
            timeVar="time_to_psa",
            basRisk=c("rw2", "rw2"), # random walk
            assocSurv=TRUE,
            family="gaussian", 
            assoc=c("CV", "CV"), # what is cv : Current value = risk event at t depends on longit.marker(psa) at t
            control=list(int.strategy="eb"), 
            dataSurv=list(fm_sur_rp), 
            dataLong=fm_surlong_rp
            )
summary(JM2_RP3)
## Longitudinal outcome (gaussian)
##                                  mean     sd 0.025quant 0.5quant 0.975quant
## Intercept_L1                   1.3610 0.0331     1.2962   1.3610     1.4259
## time_to_psa_L1                -0.0370 0.0025    -0.0419  -0.0370    -0.0321
## f1time_to_psa_L1               0.0000 0.0014    -0.0028   0.0000     0.0028
## grade_group2_L1               -0.2940 0.0358    -0.3642  -0.2940    -0.2239
## grade_group3_L1               -0.3176 0.0392    -0.3944  -0.3176    -0.2407
## grade_group4_L1               -0.3772 0.0552    -0.4853  -0.3772    -0.2690
## grade_group5_L1               -0.3015 0.0660    -0.4309  -0.3015    -0.1721
## mri1_L1                        0.0634 0.0327    -0.0007   0.0634     0.1275
## bx_age70_L1                    0.0750 0.0394    -0.0021   0.0750     0.1522
## bx_age6070_L1                  0.0706 0.0298     0.0122   0.0706     0.1291
## time_to_psa:grade_group2_L1   -0.0084 0.0034    -0.0150  -0.0084    -0.0018
## time_to_psa:grade_group3_L1   -0.0057 0.0037    -0.0129  -0.0057     0.0015
## time_to_psa:grade_group4_L1   -0.0021 0.0052    -0.0123  -0.0021     0.0082
## time_to_psa:grade_group5_L1    0.0008 0.0063    -0.0116   0.0008     0.0132
## f1time_to_psa:grade_group2_L1  0.0003 0.0019    -0.0034   0.0003     0.0041
## f1time_to_psa:grade_group3_L1  0.0003 0.0021    -0.0037   0.0003     0.0044
## f1time_to_psa:grade_group4_L1  0.0005 0.0030    -0.0053   0.0005     0.0063
## f1time_to_psa:grade_group5_L1  0.0005 0.0035    -0.0064   0.0005     0.0075
## Res. err. (variance)           0.3667 0.0037     0.3595   0.3666     0.3741
## 
## Random effects variance-covariance (L1)
##                                    mean     sd 0.025quant 0.5quant 0.975quant
## Intercept_L1                     0.1893 0.0103     0.1710   0.1888     0.2105
## time_to_psa_L1                   0.0020 0.0001     0.0018   0.0020     0.0022
## f1time_to_psa_L1                 0.0007 0.0000     0.0007   0.0007     0.0008
## Intercept_L1:time_to_psa_L1     -0.0080 0.0006    -0.0092  -0.0080    -0.0069
## Intercept_L1:f1time_to_psa_L1    0.0001 0.0001    -0.0002   0.0001     0.0003
## time_to_psa_L1:f1time_to_psa_L1  0.0000 0.0000    -0.0001   0.0000     0.0000
## 
## Survival outcome (S1)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S1 0.0346 0.0137     0.0147   0.0323     0.0681
## grade_group2_S1             0.4728 0.0629     0.3495   0.4728     0.5960
## grade_group3_S1             0.6244 0.0699     0.4873   0.6244     0.7615
## grade_group4_S1             0.7183 0.0960     0.5302   0.7183     0.9064
## grade_group5_S1             0.9380 0.1131     0.7163   0.9380     1.1596
## mri1_S1                     0.3080 0.0613     0.1879   0.3080     0.4281
## bx_age70_S1                 0.1224 0.0734    -0.0214   0.1224     0.2661
## bx_age6070_S1               0.0552 0.0549    -0.0523   0.0552     0.1628
## 
## Frailty term variance (S1)
##                 mean    sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1 0.104 0.011     0.0842   0.1034     0.1273
## 
## Survival outcome (S2)
##                               mean     sd 0.025quant 0.5quant 0.975quant
## Baseline risk (variance)_S2 0.2751 0.1175     0.1156   0.2516     0.5718
## grade_group2_S2             1.5128 0.2191     1.0835   1.5128     1.9422
## grade_group3_S2             2.1041 0.2407     1.6323   2.1041     2.5758
## grade_group4_S2             2.9376 0.3386     2.2739   2.9376     3.6013
## grade_group5_S2             4.3968 0.4026     3.6077   4.3968     5.1860
## mri1_S2                     1.7228 0.2219     1.2879   1.7228     2.1577
## bx_age70_S2                 0.9171 0.2646     0.3984   0.9171     1.4357
## bx_age6070_S2               0.2365 0.1969    -0.1495   0.2365     0.6225
## 
## Association longitudinal - survival
##             mean     sd 0.025quant 0.5quant 0.975quant
## CV_L1_S1 -1.4579 0.0793    -1.6137  -1.4579    -1.3016
## CV_L1_S2  0.4948 0.1357     0.2205   0.4971     0.7547
## 
## Association survival - survival
##                     mean     sd 0.025quant 0.5quant 0.975quant
## IDIntercept_S1_S2 9.0791 0.3855     8.3096   9.0827     9.8277
## 
## log marginal-likelihood (integration)    log marginal-likelihood (Gaussian) 
##                             -75860.42                             -75848.19 
## 
## Deviance Information Criterion:  -12025.31
## Widely applicable Bayesian information criterion:  -14092.12
## Computation time: 128.19 seconds

Effect post RT

Assessing the effect of time to treatment on risk of relapse for patients having RadioTherapy as there first Currative Treatment

Interpretation

cat('\nAFTER RP - splines: \n')
## 
## AFTER RP - splines:
int_res <- interp(JM2_RP)
int_res[1]
## [1] "Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the lowest risk of receiving treatment (i.e., longest time-to-treatment) is associated to a 0.76 [0.18,0.99] increased risk of recurrence (i.e., shorter time-to-recurrence) compared to the average individual."
int_res[2]
## [1] "Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the highest risk of receiving treatment (i.e., shortest time-to-treatment) is associated to a 1.31 [1.01,5.43] decreased risk of recurrence (i.e., longer time-to-recurrence) compared to the average individual."
cat('\nAFTER RP - linear: \n')
## 
## AFTER RP - linear:
int_res <- interp(JM2_RP2)
int_res[1]
## [1] "Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the lowest risk of receiving treatment (i.e., longest time-to-treatment) is associated to a 0.1 [0,0.83] increased risk of recurrence (i.e., shorter time-to-recurrence) compared to the average individual."
int_res[2]
## [1] "Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the highest risk of receiving treatment (i.e., shortest time-to-treatment) is associated to a 10.49 [1.2,1010.85] decreased risk of recurrence (i.e., longer time-to-recurrence) compared to the average individual."
cat('\nAFTER RP - Quadratic: \n')
## 
## AFTER RP - Quadratic:
int_res <- interp(JM2_RP3)
int_res[1]
## [1] "Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the lowest risk of receiving treatment (i.e., longest time-to-treatment) is associated to a 0.1 [0,0.85] increased risk of recurrence (i.e., shorter time-to-recurrence) compared to the average individual."
int_res[2]
## [1] "Conditional on covariates included in the model (i.e., grade group, mri, ...) and on the time-dependent PSA level, the top 15% individuals with the highest risk of receiving treatment (i.e., shortest time-to-treatment) is associated to a 10.22 [1.18,898.21] decreased risk of recurrence (i.e., longer time-to-recurrence) compared to the average individual."
#cat('\n\nAFTER RT\n')
#int_res <- interp(JM2_RT)
#int_res[1]
#int_res[2]

NOTE:

The comparison assume the same value of covariates and the same PSA level. This interpretation is valid under some assumptions:

  1. Proportional hazards (i.e., interpretation is valid regardless of the category of covariates and PSA level, as long as we compare individuals with the same)

  2. Model choice is appropriate for the data (e.g., you want enough flexibility to capture complex trajectories of PSA)

  3. There are no missing confounders (i.e., factors that affect both the time-to-treatment and the time-to-recurrence and that are not included in the model)

Trying differente risk associations