Задание 1

Установим пакет caret и выполним команду names(getModelInfo()), чтобы ознакомиться со списком доступных методов выбора признаков:

install.packages("caret", repos = "http://cran.us.r-project.org")
## Устанавливаю пакет в 'C:/Users/Rostislav/AppData/Local/R/win-library/4.3'
## (потому что 'lib' не определено)
## пакет 'caret' успешно распакован, MD5-суммы проверены
## 
## Скачанные бинарные пакеты находятся в
##  C:\Users\Rostislav\AppData\Local\Temp\Rtmp6rClbu\downloaded_packages
library(caret)
## Загрузка требуемого пакета: ggplot2
## Загрузка требуемого пакета: lattice
names(getModelInfo())
##   [1] "ada"                 "AdaBag"              "AdaBoost.M1"        
##   [4] "adaboost"            "amdai"               "ANFIS"              
##   [7] "avNNet"              "awnb"                "awtan"              
##  [10] "bag"                 "bagEarth"            "bagEarthGCV"        
##  [13] "bagFDA"              "bagFDAGCV"           "bam"                
##  [16] "bartMachine"         "bayesglm"            "binda"              
##  [19] "blackboost"          "blasso"              "blassoAveraged"     
##  [22] "bridge"              "brnn"                "BstLm"              
##  [25] "bstSm"               "bstTree"             "C5.0"               
##  [28] "C5.0Cost"            "C5.0Rules"           "C5.0Tree"           
##  [31] "cforest"             "chaid"               "CSimca"             
##  [34] "ctree"               "ctree2"              "cubist"             
##  [37] "dda"                 "deepboost"           "DENFIS"             
##  [40] "dnn"                 "dwdLinear"           "dwdPoly"            
##  [43] "dwdRadial"           "earth"               "elm"                
##  [46] "enet"                "evtree"              "extraTrees"         
##  [49] "fda"                 "FH.GBML"             "FIR.DM"             
##  [52] "foba"                "FRBCS.CHI"           "FRBCS.W"            
##  [55] "FS.HGD"              "gam"                 "gamboost"           
##  [58] "gamLoess"            "gamSpline"           "gaussprLinear"      
##  [61] "gaussprPoly"         "gaussprRadial"       "gbm_h2o"            
##  [64] "gbm"                 "gcvEarth"            "GFS.FR.MOGUL"       
##  [67] "GFS.LT.RS"           "GFS.THRIFT"          "glm.nb"             
##  [70] "glm"                 "glmboost"            "glmnet_h2o"         
##  [73] "glmnet"              "glmStepAIC"          "gpls"               
##  [76] "hda"                 "hdda"                "hdrda"              
##  [79] "HYFIS"               "icr"                 "J48"                
##  [82] "JRip"                "kernelpls"           "kknn"               
##  [85] "knn"                 "krlsPoly"            "krlsRadial"         
##  [88] "lars"                "lars2"               "lasso"              
##  [91] "lda"                 "lda2"                "leapBackward"       
##  [94] "leapForward"         "leapSeq"             "Linda"              
##  [97] "lm"                  "lmStepAIC"           "LMT"                
## [100] "loclda"              "logicBag"            "LogitBoost"         
## [103] "logreg"              "lssvmLinear"         "lssvmPoly"          
## [106] "lssvmRadial"         "lvq"                 "M5"                 
## [109] "M5Rules"             "manb"                "mda"                
## [112] "Mlda"                "mlp"                 "mlpKerasDecay"      
## [115] "mlpKerasDecayCost"   "mlpKerasDropout"     "mlpKerasDropoutCost"
## [118] "mlpML"               "mlpSGD"              "mlpWeightDecay"     
## [121] "mlpWeightDecayML"    "monmlp"              "msaenet"            
## [124] "multinom"            "mxnet"               "mxnetAdam"          
## [127] "naive_bayes"         "nb"                  "nbDiscrete"         
## [130] "nbSearch"            "neuralnet"           "nnet"               
## [133] "nnls"                "nodeHarvest"         "null"               
## [136] "OneR"                "ordinalNet"          "ordinalRF"          
## [139] "ORFlog"              "ORFpls"              "ORFridge"           
## [142] "ORFsvm"              "ownn"                "pam"                
## [145] "parRF"               "PART"                "partDSA"            
## [148] "pcaNNet"             "pcr"                 "pda"                
## [151] "pda2"                "penalized"           "PenalizedLDA"       
## [154] "plr"                 "pls"                 "plsRglm"            
## [157] "polr"                "ppr"                 "pre"                
## [160] "PRIM"                "protoclass"          "qda"                
## [163] "QdaCov"              "qrf"                 "qrnn"               
## [166] "randomGLM"           "ranger"              "rbf"                
## [169] "rbfDDA"              "Rborist"             "rda"                
## [172] "regLogistic"         "relaxo"              "rf"                 
## [175] "rFerns"              "RFlda"               "rfRules"            
## [178] "ridge"               "rlda"                "rlm"                
## [181] "rmda"                "rocc"                "rotationForest"     
## [184] "rotationForestCp"    "rpart"               "rpart1SE"           
## [187] "rpart2"              "rpartCost"           "rpartScore"         
## [190] "rqlasso"             "rqnc"                "RRF"                
## [193] "RRFglobal"           "rrlda"               "RSimca"             
## [196] "rvmLinear"           "rvmPoly"             "rvmRadial"          
## [199] "SBC"                 "sda"                 "sdwd"               
## [202] "simpls"              "SLAVE"               "slda"               
## [205] "smda"                "snn"                 "sparseLDA"          
## [208] "spikeslab"           "spls"                "stepLDA"            
## [211] "stepQDA"             "superpc"             "svmBoundrangeString"
## [214] "svmExpoString"       "svmLinear"           "svmLinear2"         
## [217] "svmLinear3"          "svmLinearWeights"    "svmLinearWeights2"  
## [220] "svmPoly"             "svmRadial"           "svmRadialCost"      
## [223] "svmRadialSigma"      "svmRadialWeights"    "svmSpectrumString"  
## [226] "tan"                 "tanSearch"           "treebag"            
## [229] "vbmpRadial"          "vglmAdjCat"          "vglmContRatio"      
## [232] "vglmCumulative"      "widekernelpls"       "WM"                 
## [235] "wsrf"                "xgbDART"             "xgbLinear"          
## [238] "xgbTree"             "xyf"

Далее выполним графический разведочный анализ данных с использованием функции featurePlot() для набора данных x:

set.seed(123)

x <- matrix(rnorm(50*5),ncol=5)
y <- factor(rep(c("A", "B"), 25))

featurePlot(x, y, plot="box")

featurePlot(x, y, plot="density")

jpeg("boxplot.jpg")
featurePlot(x, y, plot="box")
dev.off()
## png 
##   2
jpeg("density.jpg")
featurePlot(x, y, plot="density")
dev.off()
## png 
##   2

Задание 2

Установим пакет FSelector и загрузим набор данных iris:

install.packages("FSelector", repos = "http://cran.us.r-project.org")
## Устанавливаю пакет в 'C:/Users/Rostislav/AppData/Local/R/win-library/4.3'
## (потому что 'lib' не определено)
## пакет 'FSelector' успешно распакован, MD5-суммы проверены
## 
## Скачанные бинарные пакеты находятся в
##  C:\Users\Rostislav\AppData\Local\Temp\Rtmp6rClbu\downloaded_packages
library(FSelector)
## java.home option:
## JAVA_HOME environment variable: C:\Program Files\Java\jdk-1.8
## Warning in fun(libname, pkgname): Java home setting is INVALID, it will be ignored.
## Please do NOT set it unless you want to override system settings.
data(iris)

Для определения важности признаков для решения задачи классификации воспользуемся функцией information.gain():

gain <- information.gain(Species ~ ., iris)
print(gain)
##              attr_importance
## Sepal.Length       0.4521286
## Sepal.Width        0.2672750
## Petal.Length       0.9402853
## Petal.Width        0.9554360

Результат выполнения этой команды покажет, какой признак имеет наибольшую информационную выгоду при решении задачи классификации.

Задание 3

Установим пакет arules:

install.packages("arules", repos = "http://cran.us.r-project.org")
## Устанавливаю пакет в 'C:/Users/Rostislav/AppData/Local/R/win-library/4.3'
## (потому что 'lib' не определено)
## пакет 'arules' успешно распакован, MD5-суммы проверены
## 
## Скачанные бинарные пакеты находятся в
##  C:\Users\Rostislav\AppData\Local\Temp\Rtmp6rClbu\downloaded_packages
library(arules)
## Загрузка требуемого пакета: Matrix
## 
## Присоединяю пакет: 'arules'
## Следующие объекты скрыты от 'package:base':
## 
##     abbreviate, write
data(iris)

Преобразуем непрерывную переменную в категориальную различными методами:

iris_interval <- discretize(iris$Sepal.Length, method="interval", breaks=5)
iris_frequency <- discretize(iris$Sepal.Length, method="frequency", breaks=5)
iris_cluster <- discretize(iris$Sepal.Length, method="cluster", breaks=5)
iris_fixed <- discretize(iris$Sepal.Length, method="fixed", categories=c("0-4","4-6","6-8","8-10"))
## Warning in discretize(iris$Sepal.Length, method = "fixed", categories =
## c("0-4", : Parameter categories is deprecated. Use breaks instead! Also, the
## default method is now frequency!
## Warning in sort.int(as.double(breaks)): в результате преобразования созданы NA
print(iris_interval)
##   [1] [5.02,5.74) [4.3,5.02)  [4.3,5.02)  [4.3,5.02)  [4.3,5.02)  [5.02,5.74)
##   [7] [4.3,5.02)  [4.3,5.02)  [4.3,5.02)  [4.3,5.02)  [5.02,5.74) [4.3,5.02) 
##  [13] [4.3,5.02)  [4.3,5.02)  [5.74,6.46) [5.02,5.74) [5.02,5.74) [5.02,5.74)
##  [19] [5.02,5.74) [5.02,5.74) [5.02,5.74) [5.02,5.74) [4.3,5.02)  [5.02,5.74)
##  [25] [4.3,5.02)  [4.3,5.02)  [4.3,5.02)  [5.02,5.74) [5.02,5.74) [4.3,5.02) 
##  [31] [4.3,5.02)  [5.02,5.74) [5.02,5.74) [5.02,5.74) [4.3,5.02)  [4.3,5.02) 
##  [37] [5.02,5.74) [4.3,5.02)  [4.3,5.02)  [5.02,5.74) [4.3,5.02)  [4.3,5.02) 
##  [43] [4.3,5.02)  [4.3,5.02)  [5.02,5.74) [4.3,5.02)  [5.02,5.74) [4.3,5.02) 
##  [49] [5.02,5.74) [4.3,5.02)  [6.46,7.18) [5.74,6.46) [6.46,7.18) [5.02,5.74)
##  [55] [6.46,7.18) [5.02,5.74) [5.74,6.46) [4.3,5.02)  [6.46,7.18) [5.02,5.74)
##  [61] [4.3,5.02)  [5.74,6.46) [5.74,6.46) [5.74,6.46) [5.02,5.74) [6.46,7.18)
##  [67] [5.02,5.74) [5.74,6.46) [5.74,6.46) [5.02,5.74) [5.74,6.46) [5.74,6.46)
##  [73] [5.74,6.46) [5.74,6.46) [5.74,6.46) [6.46,7.18) [6.46,7.18) [6.46,7.18)
##  [79] [5.74,6.46) [5.02,5.74) [5.02,5.74) [5.02,5.74) [5.74,6.46) [5.74,6.46)
##  [85] [5.02,5.74) [5.74,6.46) [6.46,7.18) [5.74,6.46) [5.02,5.74) [5.02,5.74)
##  [91] [5.02,5.74) [5.74,6.46) [5.74,6.46) [4.3,5.02)  [5.02,5.74) [5.02,5.74)
##  [97] [5.02,5.74) [5.74,6.46) [5.02,5.74) [5.02,5.74) [5.74,6.46) [5.74,6.46)
## [103] [6.46,7.18) [5.74,6.46) [6.46,7.18) [7.18,7.9]  [4.3,5.02)  [7.18,7.9] 
## [109] [6.46,7.18) [7.18,7.9]  [6.46,7.18) [5.74,6.46) [6.46,7.18) [5.02,5.74)
## [115] [5.74,6.46) [5.74,6.46) [6.46,7.18) [7.18,7.9]  [7.18,7.9]  [5.74,6.46)
## [121] [6.46,7.18) [5.02,5.74) [7.18,7.9]  [5.74,6.46) [6.46,7.18) [7.18,7.9] 
## [127] [5.74,6.46) [5.74,6.46) [5.74,6.46) [7.18,7.9]  [7.18,7.9]  [7.18,7.9] 
## [133] [5.74,6.46) [5.74,6.46) [5.74,6.46) [7.18,7.9]  [5.74,6.46) [5.74,6.46)
## [139] [5.74,6.46) [6.46,7.18) [6.46,7.18) [6.46,7.18) [5.74,6.46) [6.46,7.18)
## [145] [6.46,7.18) [6.46,7.18) [5.74,6.46) [6.46,7.18) [5.74,6.46) [5.74,6.46)
## attr(,"discretized:breaks")
## [1] 4.30 5.02 5.74 6.46 7.18 7.90
## attr(,"discretized:method")
## [1] interval
## Levels: [4.3,5.02) [5.02,5.74) [5.74,6.46) [6.46,7.18) [7.18,7.9]
print(iris_frequency)
##   [1] [5,5.6)    [4.3,5)    [4.3,5)    [4.3,5)    [5,5.6)    [5,5.6)   
##   [7] [4.3,5)    [5,5.6)    [4.3,5)    [4.3,5)    [5,5.6)    [4.3,5)   
##  [13] [4.3,5)    [4.3,5)    [5.6,6.1)  [5.6,6.1)  [5,5.6)    [5,5.6)   
##  [19] [5.6,6.1)  [5,5.6)    [5,5.6)    [5,5.6)    [4.3,5)    [5,5.6)   
##  [25] [4.3,5)    [5,5.6)    [5,5.6)    [5,5.6)    [5,5.6)    [4.3,5)   
##  [31] [4.3,5)    [5,5.6)    [5,5.6)    [5,5.6)    [4.3,5)    [5,5.6)   
##  [37] [5,5.6)    [4.3,5)    [4.3,5)    [5,5.6)    [5,5.6)    [4.3,5)   
##  [43] [4.3,5)    [5,5.6)    [5,5.6)    [4.3,5)    [5,5.6)    [4.3,5)   
##  [49] [5,5.6)    [5,5.6)    [6.52,7.9] [6.1,6.52) [6.52,7.9] [5,5.6)   
##  [55] [6.1,6.52) [5.6,6.1)  [6.1,6.52) [4.3,5)    [6.52,7.9] [5,5.6)   
##  [61] [5,5.6)    [5.6,6.1)  [5.6,6.1)  [6.1,6.52) [5.6,6.1)  [6.52,7.9]
##  [67] [5.6,6.1)  [5.6,6.1)  [6.1,6.52) [5.6,6.1)  [5.6,6.1)  [6.1,6.52)
##  [73] [6.1,6.52) [6.1,6.52) [6.1,6.52) [6.52,7.9] [6.52,7.9] [6.52,7.9]
##  [79] [5.6,6.1)  [5.6,6.1)  [5,5.6)    [5,5.6)    [5.6,6.1)  [5.6,6.1) 
##  [85] [5,5.6)    [5.6,6.1)  [6.52,7.9] [6.1,6.52) [5.6,6.1)  [5,5.6)   
##  [91] [5,5.6)    [6.1,6.52) [5.6,6.1)  [5,5.6)    [5.6,6.1)  [5.6,6.1) 
##  [97] [5.6,6.1)  [6.1,6.52) [5,5.6)    [5.6,6.1)  [6.1,6.52) [5.6,6.1) 
## [103] [6.52,7.9] [6.1,6.52) [6.1,6.52) [6.52,7.9] [4.3,5)    [6.52,7.9]
## [109] [6.52,7.9] [6.52,7.9] [6.1,6.52) [6.1,6.52) [6.52,7.9] [5.6,6.1) 
## [115] [5.6,6.1)  [6.1,6.52) [6.1,6.52) [6.52,7.9] [6.52,7.9] [5.6,6.1) 
## [121] [6.52,7.9] [5.6,6.1)  [6.52,7.9] [6.1,6.52) [6.52,7.9] [6.52,7.9]
## [127] [6.1,6.52) [6.1,6.52) [6.1,6.52) [6.52,7.9] [6.52,7.9] [6.52,7.9]
## [133] [6.1,6.52) [6.1,6.52) [6.1,6.52) [6.52,7.9] [6.1,6.52) [6.1,6.52)
## [139] [5.6,6.1)  [6.52,7.9] [6.52,7.9] [6.52,7.9] [5.6,6.1)  [6.52,7.9]
## [145] [6.52,7.9] [6.52,7.9] [6.1,6.52) [6.1,6.52) [6.1,6.52) [5.6,6.1) 
## attr(,"discretized:breaks")
## [1] 4.30 5.00 5.60 6.10 6.52 7.90
## attr(,"discretized:method")
## [1] frequency
## Levels: [4.3,5) [5,5.6) [5.6,6.1) [6.1,6.52) [6.52,7.9]
print(iris_cluster)
##   [1] [4.77,5.32) [4.77,5.32) [4.3,4.77)  [4.3,4.77)  [4.77,5.32) [5.32,5.95)
##   [7] [4.3,4.77)  [4.77,5.32) [4.3,4.77)  [4.77,5.32) [5.32,5.95) [4.77,5.32)
##  [13] [4.77,5.32) [4.3,4.77)  [5.32,5.95) [5.32,5.95) [5.32,5.95) [4.77,5.32)
##  [19] [5.32,5.95) [4.77,5.32) [5.32,5.95) [4.77,5.32) [4.3,4.77)  [4.77,5.32)
##  [25] [4.77,5.32) [4.77,5.32) [4.77,5.32) [4.77,5.32) [4.77,5.32) [4.3,4.77) 
##  [31] [4.77,5.32) [5.32,5.95) [4.77,5.32) [5.32,5.95) [4.77,5.32) [4.77,5.32)
##  [37] [5.32,5.95) [4.77,5.32) [4.3,4.77)  [4.77,5.32) [4.77,5.32) [4.3,4.77) 
##  [43] [4.3,4.77)  [4.77,5.32) [4.77,5.32) [4.77,5.32) [4.77,5.32) [4.3,4.77) 
##  [49] [4.77,5.32) [4.77,5.32) [6.68,7.9]  [5.95,6.68) [6.68,7.9]  [5.32,5.95)
##  [55] [5.95,6.68) [5.32,5.95) [5.95,6.68) [4.77,5.32) [5.95,6.68) [4.77,5.32)
##  [61] [4.77,5.32) [5.32,5.95) [5.95,6.68) [5.95,6.68) [5.32,5.95) [6.68,7.9] 
##  [67] [5.32,5.95) [5.32,5.95) [5.95,6.68) [5.32,5.95) [5.32,5.95) [5.95,6.68)
##  [73] [5.95,6.68) [5.95,6.68) [5.95,6.68) [5.95,6.68) [6.68,7.9]  [6.68,7.9] 
##  [79] [5.95,6.68) [5.32,5.95) [5.32,5.95) [5.32,5.95) [5.32,5.95) [5.95,6.68)
##  [85] [5.32,5.95) [5.95,6.68) [6.68,7.9]  [5.95,6.68) [5.32,5.95) [5.32,5.95)
##  [91] [5.32,5.95) [5.95,6.68) [5.32,5.95) [4.77,5.32) [5.32,5.95) [5.32,5.95)
##  [97] [5.32,5.95) [5.95,6.68) [4.77,5.32) [5.32,5.95) [5.95,6.68) [5.32,5.95)
## [103] [6.68,7.9]  [5.95,6.68) [5.95,6.68) [6.68,7.9]  [4.77,5.32) [6.68,7.9] 
## [109] [6.68,7.9]  [6.68,7.9]  [5.95,6.68) [5.95,6.68) [6.68,7.9]  [5.32,5.95)
## [115] [5.32,5.95) [5.95,6.68) [5.95,6.68) [6.68,7.9]  [6.68,7.9]  [5.95,6.68)
## [121] [6.68,7.9]  [5.32,5.95) [6.68,7.9]  [5.95,6.68) [6.68,7.9]  [6.68,7.9] 
## [127] [5.95,6.68) [5.95,6.68) [5.95,6.68) [6.68,7.9]  [6.68,7.9]  [6.68,7.9] 
## [133] [5.95,6.68) [5.95,6.68) [5.95,6.68) [6.68,7.9]  [5.95,6.68) [5.95,6.68)
## [139] [5.95,6.68) [6.68,7.9]  [6.68,7.9]  [6.68,7.9]  [5.32,5.95) [6.68,7.9] 
## [145] [6.68,7.9]  [6.68,7.9]  [5.95,6.68) [5.95,6.68) [5.95,6.68) [5.32,5.95)
## attr(,"discretized:breaks")
## [1] 4.300000 4.769351 5.321931 5.952114 6.676969 7.900000
## attr(,"discretized:method")
## [1] cluster
## Levels: [4.3,4.77) [4.77,5.32) [5.32,5.95) [5.95,6.68) [6.68,7.9]
print(iris_fixed)
##   [1] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
##  [16] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
##  [31] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
##  [46] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
##  [61] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
##  [76] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
##  [91] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## [106] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## [121] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## [136] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## attr(,"discretized:breaks")
## [1] 0-4  4-6  6-8  8-10
## attr(,"discretized:method")
## [1] fixed
## Levels: [,)

Задание 4

Установим пакет Boruta и загрузим набор данных Ozone:

install.packages("Boruta", repos = "http://cran.us.r-project.org")
## Устанавливаю пакет в 'C:/Users/Rostislav/AppData/Local/R/win-library/4.3'
## (потому что 'lib' не определено)
## пакет 'Boruta' успешно распакован, MD5-суммы проверены
## 
## Скачанные бинарные пакеты находятся в
##  C:\Users\Rostislav\AppData\Local\Temp\Rtmp6rClbu\downloaded_packages
library(Boruta)

install.packages("mlbench", repos = "http://cran.us.r-project.org")
## Устанавливаю пакет в 'C:/Users/Rostislav/AppData/Local/R/win-library/4.3'
## (потому что 'lib' не определено)
## пакет 'mlbench' успешно распакован, MD5-суммы проверены
## Warning: не могу удалить прежнюю установку пакета 'mlbench'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): проблема с копированием
## C:\Users\Rostislav\AppData\Local\R\win-library\4.3\00LOCK\mlbench\libs\x64\mlbench.dll
## в C:\Users\Rostislav\AppData\Local\R\win-library\4.3\mlbench\libs\x64\mlbench.dll:
## Permission denied
## Warning: восстановлен 'mlbench'
## 
## Скачанные бинарные пакеты находятся в
##  C:\Users\Rostislav\AppData\Local\Temp\Rtmp6rClbu\downloaded_packages
library(mlbench)
data("Ozone")

Проведем выбор признаков для набора данных с помощью алгоритма Боруты:

set.seed(123)
Ozone <- na.omit(Ozone)
boruta_result <- Boruta(V4 ~ ., data = Ozone, doTrace = 2)
##  1. run of importance source...
##  2. run of importance source...
##  3. run of importance source...
##  4. run of importance source...
##  5. run of importance source...
##  6. run of importance source...
##  7. run of importance source...
##  8. run of importance source...
##  9. run of importance source...
##  10. run of importance source...
##  11. run of importance source...
## After 11 iterations, +0.41 secs:
##  confirmed 9 attributes: V1, V10, V11, V12, V13 and 4 more;
##  rejected 2 attributes: V3, V6;
##  still have 1 attribute left.
##  12. run of importance source...
##  13. run of importance source...
##  14. run of importance source...
##  15. run of importance source...
##  16. run of importance source...
##  17. run of importance source...
##  18. run of importance source...
##  19. run of importance source...
##  20. run of importance source...
##  21. run of importance source...
##  22. run of importance source...
##  23. run of importance source...
##  24. run of importance source...
## After 24 iterations, +0.84 secs:
##  rejected 1 attribute: V2;
##  no more attributes left.
print(boruta_result)
## Boruta performed 24 iterations in 0.8431001 secs.
##  9 attributes confirmed important: V1, V10, V11, V12, V13 and 4 more;
##  3 attributes confirmed unimportant: V2, V3, V6;

Строим график boxplot для выбранных признаков

selected_features <- getSelectedAttributes(boruta_result)
Ozone_selected <- Ozone[,c(selected_features, "V4")]
boxplot(Ozone_selected, main="Selected Features Boxplot")