Summary

data <- read_csv("all_cbsa_summary.csv")
## Rows: 9400 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): avg_eal_tercile, NAME
## dbl (8): archive_version_year, CBSAFP, rows, with_parent_number, mean_employ...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
plot1 <- data %>% ggplot()+
  geom_line(aes(archive_version_year,rows,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("Number of Businesses")
plot2 <- data %>% ggplot()+
  geom_line(aes(archive_version_year,mean_employees,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("Mean employees")
plot3 <- data %>% ggplot()+
  geom_line(aes(archive_version_year,mean_year_established,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("Mean year established")
plot4 <- data %>% mutate(pct_with_parent=with_parent_number/rows) %>% ggplot()+
  geom_line(aes(archive_version_year,pct_with_parent,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("% with parent")

ggplotly(plot1)  %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))
ggplotly(plot2) %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))
ggplotly(plot3) %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))
ggplotly(plot4) %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))

Summary (Top 100)

data <- read_csv("all_cbsa_summary_100.csv")
## Rows: 1000 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): avg_eal_tercile, NAME
## dbl (8): archive_version_year, CBSAFP, rows, with_parent_number, mean_employ...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
plot1 <- data %>% ggplot()+
  geom_line(aes(archive_version_year,rows,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("Number of Businesses")
plot2 <- data %>% ggplot()+
  geom_line(aes(archive_version_year,mean_employees,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("Mean employees")
plot3 <- data %>% ggplot()+
  geom_line(aes(archive_version_year,mean_year_established,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("Mean year established")
plot4 <- data %>% mutate(pct_with_parent=with_parent_number/rows) %>% ggplot()+
  geom_line(aes(archive_version_year,pct_with_parent,color=NAME),alpha=0.5)+
  facet_wrap(~avg_eal_tercile,ncol =2)+
  ggtitle("% with parent")

ggplotly(plot1)  %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))
ggplotly(plot2) %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))
ggplotly(plot3) %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))
ggplotly(plot4) %>% layout(showlegend = TRUE, legend = list(font = list(size = 6)))

Births Deaths - All by Risk

## Rows: 1000 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): NAME, avg_eal_tercile
## dbl (8): archive_version_year, CBSAFP, entry, exit, births, deaths, avg_eal,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
##  archive_version_year     CBSAFP          entry             exit       
##  Min.   :2013         Min.   :10420   Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:2015         1st Qu.:19348   1st Qu.: 26.00   1st Qu.: 25.00  
##  Median :2018         Median :32060   Median : 45.00   Median : 44.00  
##  Mean   :2018         Mean   :30209   Mean   : 67.08   Mean   : 67.08  
##  3rd Qu.:2020         3rd Qu.:40080   3rd Qu.: 84.00   3rd Qu.: 79.00  
##  Max.   :2022         Max.   :49340   Max.   :561.00   Max.   :670.00  
##                                                        NA's   :100     
##      births           deaths           NAME              avg_eal     
##  Min.   :  1328   Min.   :  1128   Length:1000        Min.   :38.21  
##  1st Qu.:  3617   1st Qu.:  3416   Class :character   1st Qu.:65.60  
##  Median :  6166   Median :  5294   Mode  :character   Median :75.28  
##  Mean   : 12411   Mean   : 10836                      Mean   :77.28  
##  3rd Qu.: 13648   3rd Qu.: 11576                      3rd Qu.:94.11  
##  Max.   :171670   Max.   :139494                      Max.   :99.91  
##                   NA's   :100                                        
##     tercile     avg_eal_tercile   
##  Min.   :1.00   Length:1000       
##  1st Qu.:1.00   Class :character  
##  Median :2.00   Mode  :character  
##  Mean   :1.99                     
##  3rd Qu.:3.00                     
##  Max.   :3.00                     
## 

Births Deaths - with parent by Risk

## Rows: 978 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): NAME, avg_eal_tercile
## dbl (8): archive_version_year, CBSAFP, entry, exit, births, deaths, avg_eal,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
##  archive_version_year     CBSAFP          entry             exit       
##  Min.   :2013         Min.   :10420   Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:2015         1st Qu.:19430   1st Qu.:  4.00   1st Qu.: 20.00  
##  Median :2018         Median :31540   Median :  8.00   Median : 36.00  
##  Mean   :2018         Mean   :30192   Mean   : 13.37   Mean   : 54.31  
##  3rd Qu.:2020         3rd Qu.:40060   3rd Qu.: 16.00   3rd Qu.: 66.00  
##  Max.   :2022         Max.   :49340   Max.   :111.00   Max.   :594.00  
##                                                        NA's   :97      
##      births            deaths           NAME              avg_eal     
##  Min.   :   12.0   Min.   :  1128   Length:978         Min.   :38.21  
##  1st Qu.:  447.0   1st Qu.:  3428   Class :character   1st Qu.:65.97  
##  Median :  797.5   Median :  5354   Mode  :character   Median :75.17  
##  Mean   : 1407.4   Mean   : 10946                      Mean   :77.35  
##  3rd Qu.: 1646.2   3rd Qu.: 11691                      3rd Qu.:94.62  
##  Max.   :19335.0   Max.   :139494                      Max.   :99.91  
##                    NA's   :96                                         
##     tercile      avg_eal_tercile   
##  Min.   :1.000   Length:978        
##  1st Qu.:1.000   Class :character  
##  Median :2.000   Mode  :character  
##  Mean   :1.993                     
##  3rd Qu.:3.000                     
##  Max.   :3.000                     
## 

Births Deaths - standalone by Risk

## Rows: 1000 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): NAME, avg_eal_tercile
## dbl (8): archive_version_year, CBSAFP, entry, exit, births, deaths, avg_eal,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
##  archive_version_year     CBSAFP          entry             exit       
##  Min.   :2013         Min.   :10420   Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:2015         1st Qu.:19348   1st Qu.: 20.00   1st Qu.: 19.00  
##  Median :2018         Median :32060   Median : 35.00   Median : 35.00  
##  Mean   :2018         Mean   :30209   Mean   : 52.28   Mean   : 53.53  
##  3rd Qu.:2020         3rd Qu.:40080   3rd Qu.: 64.00   3rd Qu.: 65.00  
##  Max.   :2022         Max.   :49340   Max.   :499.00   Max.   :594.00  
##                                                        NA's   :101     
##      births           deaths           NAME              avg_eal     
##  Min.   :  1152   Min.   :  1128   Length:1000        Min.   :38.21  
##  1st Qu.:  3337   1st Qu.:  3416   Class :character   1st Qu.:65.60  
##  Median :  5682   Median :  5294   Mode  :character   Median :75.28  
##  Mean   : 11596   Mean   : 10836                      Mean   :77.28  
##  3rd Qu.: 12722   3rd Qu.: 11576                      3rd Qu.:94.11  
##  Max.   :169862   Max.   :139494                      Max.   :99.91  
##                   NA's   :100                                        
##     tercile     avg_eal_tercile   
##  Min.   :1.00   Length:1000       
##  1st Qu.:1.00   Class :character  
##  Median :2.00   Mode  :character  
##  Mean   :1.99                     
##  3rd Qu.:3.00                     
##  Max.   :3.00                     
## 

Births Deaths - All by Population

top100_cbsa <- get_acs(geography = "cbsa", variables = c(pop="B01001_001"),output = "wide") %>%
  top_n(100,popE) %>%
  mutate(pop_tercile = ntile(popE, 3)) %>%
  mutate(pop_tercile=as_factor(pop_tercile)) %>%
  mutate(pop_tercile = factor(pop_tercile, levels = 1:3, labels = c("Pop: Low", "Pop: Moderate", "Pop: High"))) %>% 
  select(pop_tercile,GEOID)
## Getting data from the 2018-2022 5-year ACS
data <- read_csv("cbsa_births_deaths_exits_entrys.csv") %>%
  mutate(CBSAFP=as.character(CBSAFP)) %>%
  mutate(avg_eal_tercile = factor(avg_eal_tercile,
                                levels = c("Low", "Moderate", "High"))) %>%
  mutate(avg_eal_tercile = fct_recode(avg_eal_tercile,
                                      "EAL: Low" = "Low",
                                      "EAL: Moderate" = "Moderate",
                                      "EAL: High" = "High")) %>%
  left_join(top100_cbsa,by=c("CBSAFP"="GEOID"))
## Rows: 1000 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): NAME, avg_eal_tercile
## dbl (8): archive_version_year, CBSAFP, entry, exit, births, deaths, avg_eal,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(data)
##  archive_version_year    CBSAFP              entry             exit       
##  Min.   :2013         Length:1000        Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:2015         Class :character   1st Qu.: 26.00   1st Qu.: 25.00  
##  Median :2018         Mode  :character   Median : 45.00   Median : 44.00  
##  Mean   :2018                            Mean   : 67.08   Mean   : 67.08  
##  3rd Qu.:2020                            3rd Qu.: 84.00   3rd Qu.: 79.00  
##  Max.   :2022                            Max.   :561.00   Max.   :670.00  
##                                                           NA's   :100     
##      births           deaths           NAME              avg_eal     
##  Min.   :  1328   Min.   :  1128   Length:1000        Min.   :38.21  
##  1st Qu.:  3617   1st Qu.:  3416   Class :character   1st Qu.:65.60  
##  Median :  6166   Median :  5294   Mode  :character   Median :75.28  
##  Mean   : 12411   Mean   : 10836                      Mean   :77.28  
##  3rd Qu.: 13648   3rd Qu.: 11576                      3rd Qu.:94.11  
##  Max.   :171670   Max.   :139494                      Max.   :99.91  
##                   NA's   :100                                        
##     tercile          avg_eal_tercile        pop_tercile 
##  Min.   :1.00   EAL: Low     :340    Pop: Low     :340  
##  1st Qu.:1.00   EAL: Moderate:330    Pop: Moderate:330  
##  Median :2.00   EAL: High    :330    Pop: High    :330  
##  Mean   :1.99                                           
##  3rd Qu.:3.00                                           
##  Max.   :3.00                                           
## 

Births Deaths - with parent by Population

data <- read_csv("cbsa_births_deaths_exits_entrys_parent.csv") %>%
  mutate(CBSAFP=as.character(CBSAFP)) %>%
  mutate(avg_eal_tercile = factor(avg_eal_tercile,
                                levels = c("Low", "Moderate", "High"))) %>%
  mutate(avg_eal_tercile = fct_recode(avg_eal_tercile,
                                      "EAL: Low" = "Low",
                                      "EAL: Moderate" = "Moderate",
                                      "EAL: High" = "High")) %>%
  left_join(top100_cbsa,by=c("CBSAFP"="GEOID"))
## Rows: 978 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): NAME, avg_eal_tercile
## dbl (8): archive_version_year, CBSAFP, entry, exit, births, deaths, avg_eal,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(data)
##  archive_version_year    CBSAFP              entry             exit       
##  Min.   :2013         Length:978         Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:2015         Class :character   1st Qu.:  4.00   1st Qu.: 20.00  
##  Median :2018         Mode  :character   Median :  8.00   Median : 36.00  
##  Mean   :2018                            Mean   : 13.37   Mean   : 54.31  
##  3rd Qu.:2020                            3rd Qu.: 16.00   3rd Qu.: 66.00  
##  Max.   :2022                            Max.   :111.00   Max.   :594.00  
##                                                           NA's   :97      
##      births            deaths           NAME              avg_eal     
##  Min.   :   12.0   Min.   :  1128   Length:978         Min.   :38.21  
##  1st Qu.:  447.0   1st Qu.:  3428   Class :character   1st Qu.:65.97  
##  Median :  797.5   Median :  5354   Mode  :character   Median :75.17  
##  Mean   : 1407.4   Mean   : 10946                      Mean   :77.35  
##  3rd Qu.: 1646.2   3rd Qu.: 11691                      3rd Qu.:94.62  
##  Max.   :19335.0   Max.   :139494                      Max.   :99.91  
##                    NA's   :96                                         
##     tercile           avg_eal_tercile        pop_tercile 
##  Min.   :1.000   EAL: Low     :332    Pop: Low     :327  
##  1st Qu.:1.000   EAL: Moderate:321    Pop: Moderate:321  
##  Median :2.000   EAL: High    :325    Pop: High    :330  
##  Mean   :1.993                                           
##  3rd Qu.:3.000                                           
##  Max.   :3.000                                           
## 

Births Deaths - standalone by Population

data <- read_csv("cbsa_births_deaths_exits_entrys_standalone.csv") %>%
  mutate(CBSAFP=as.character(CBSAFP)) %>%
  mutate(avg_eal_tercile = factor(avg_eal_tercile,
                                levels = c("Low", "Moderate", "High"))) %>%
  mutate(avg_eal_tercile = fct_recode(avg_eal_tercile,
                                      "EAL: Low" = "Low",
                                      "EAL: Moderate" = "Moderate",
                                      "EAL: High" = "High")) %>%
  left_join(top100_cbsa,by=c("CBSAFP"="GEOID"))
## Rows: 1000 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): NAME, avg_eal_tercile
## dbl (8): archive_version_year, CBSAFP, entry, exit, births, deaths, avg_eal,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(data)
##  archive_version_year    CBSAFP              entry             exit       
##  Min.   :2013         Length:1000        Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:2015         Class :character   1st Qu.: 20.00   1st Qu.: 19.00  
##  Median :2018         Mode  :character   Median : 35.00   Median : 35.00  
##  Mean   :2018                            Mean   : 52.28   Mean   : 53.53  
##  3rd Qu.:2020                            3rd Qu.: 64.00   3rd Qu.: 65.00  
##  Max.   :2022                            Max.   :499.00   Max.   :594.00  
##                                                           NA's   :101     
##      births           deaths           NAME              avg_eal     
##  Min.   :  1152   Min.   :  1128   Length:1000        Min.   :38.21  
##  1st Qu.:  3337   1st Qu.:  3416   Class :character   1st Qu.:65.60  
##  Median :  5682   Median :  5294   Mode  :character   Median :75.28  
##  Mean   : 11596   Mean   : 10836                      Mean   :77.28  
##  3rd Qu.: 12722   3rd Qu.: 11576                      3rd Qu.:94.11  
##  Max.   :169862   Max.   :139494                      Max.   :99.91  
##                   NA's   :100                                        
##     tercile          avg_eal_tercile        pop_tercile 
##  Min.   :1.00   EAL: Low     :340    Pop: Low     :340  
##  1st Qu.:1.00   EAL: Moderate:330    Pop: Moderate:330  
##  Median :2.00   EAL: High    :330    Pop: High    :330  
##  Mean   :1.99                                           
##  3rd Qu.:3.00                                           
##  Max.   :3.00                                           
## 

NAICs breakdown

## Rows: 780 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile
## dbl (3): archive_version_year, naics_2, rows
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 778 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile
## dbl (3): archive_version_year, naics_2, births
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 780 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile
## dbl (3): archive_version_year, naics_2, deaths
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 777 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile
## dbl (3): archive_version_year, naics_2, entries
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 776 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile
## dbl (3): archive_version_year, naics_2, exits
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Matrix Counts

## Rows: 4 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (4): Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Births, rows (hq), columns (branch)
avg_eal_tercile_parent Low Low_pct Moderate Moderate_pct High High_pct Outside100 Outside100_pct Total
Low 112188 0.20 100817 0.18 79781 0.14 269305 0.48 562091
Moderate 55558 0.14 120759 0.30 62719 0.16 157848 0.40 396884
High 63981 0.12 93382 0.17 139196 0.26 239593 0.45 536152
Outside100 85846 0.14 106981 0.17 88148 0.14 330382 0.54 611357
## Rows: 40 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (5): archive_version_year, Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Births yearly, rows (hq), columns (branch)
year avg_eal_tercile_parent Low Low_pct Moderate Moderate_pct High High_pct Outside100 Outside100_pct Total
2013 Low 12643 0.22 9972 0.18 8186 0.15 25553 0.45 56354
2013 Moderate 8886 0.15 17838 0.29 9205 0.15 24993 0.41 60922
2013 High 12535 0.13 17065 0.17 23942 0.24 44923 0.46 98465
2013 Outside100 12703 0.15 15619 0.19 13249 0.16 42120 0.50 83691
2014 Low 9844 0.25 7065 0.18 5492 0.14 17024 0.43 39425
2014 Moderate 5881 0.14 13628 0.32 6038 0.14 16613 0.39 42160
2014 High 6894 0.12 10177 0.18 16240 0.28 24245 0.42 57556
2014 Outside100 8693 0.15 10776 0.18 8307 0.14 32022 0.54 59798
2015 Low 9131 0.23 6986 0.17 5961 0.15 18055 0.45 40133
2015 Moderate 6110 0.14 12307 0.29 6782 0.16 17189 0.41 42388
2015 High 6835 0.12 10047 0.18 14599 0.26 24091 0.43 55572
2015 Outside100 8567 0.14 10399 0.17 9112 0.15 31984 0.53 60062
2016 Low 7721 0.25 5591 0.18 4434 0.14 13721 0.44 31467
2016 Moderate 5824 0.14 12730 0.31 6899 0.17 15720 0.38 41173
2016 High 5348 0.11 7662 0.16 12530 0.27 21330 0.46 46870
2016 Outside100 7581 0.13 9329 0.16 7525 0.13 33276 0.58 57711
2017 Low 6577 0.19 6508 0.19 4696 0.14 16121 0.48 33902
2017 Moderate 3595 0.13 7539 0.28 4205 0.16 11596 0.43 26935
2017 High 5161 0.12 7466 0.18 10014 0.24 19592 0.46 42233
2017 Outside100 6259 0.14 8120 0.18 6376 0.14 23334 0.53 44089
2018 Low 7585 0.24 5727 0.18 4342 0.14 14461 0.45 32115
2018 Moderate 4304 0.13 9939 0.30 4880 0.15 14473 0.43 33596
2018 High 5539 0.12 8043 0.17 11982 0.26 21339 0.45 46903
2018 Outside100 7553 0.14 9559 0.17 7388 0.13 31154 0.56 55654
2019 Low 7810 0.24 5391 0.17 4356 0.14 14670 0.46 32227
2019 Moderate 4695 0.14 10884 0.32 5498 0.16 13187 0.38 34264
2019 High 5901 0.11 9088 0.17 13031 0.25 24820 0.47 52840
2019 Outside100 6526 0.14 8259 0.17 7111 0.15 25992 0.54 47888
2020 Low 19749 0.16 20235 0.17 16543 0.14 64578 0.53 121105
2020 Moderate 3982 0.13 9439 0.32 4435 0.15 12074 0.40 29930
2020 High 6009 0.12 9307 0.19 12323 0.25 22563 0.45 50202
2020 Outside100 10531 0.13 13775 0.17 11019 0.14 44523 0.56 79848
2021 Low 6605 0.28 3651 0.16 2887 0.12 10085 0.43 23228
2021 Moderate 2808 0.12 8312 0.37 3062 0.13 8584 0.38 22766
2021 High 3448 0.11 5021 0.16 9284 0.29 14372 0.45 32125
2021 Outside100 5773 0.13 6753 0.15 6073 0.14 25042 0.57 43641
2022 Low 24523 0.16 29691 0.20 22884 0.15 75037 0.49 152135
2022 Moderate 9473 0.15 18143 0.29 11715 0.19 23419 0.37 62750
2022 High 6311 0.12 9506 0.18 15251 0.29 22318 0.42 53386
2022 Outside100 11660 0.15 14392 0.18 11988 0.15 40935 0.52 78975
## Rows: 4 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (4): Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Deaths, rows (hq), columns (branch)
avg_eal_tercile_parent Low Low_pct Moderate Moderate_pct High High_pct Outside100 Outside100_pct Total
Low 65342 0.21 54570 0.17 44652 0.14 147916 0.47 312480
Moderate 44158 0.14 88708 0.28 49200 0.16 134026 0.42 316092
High 58132 0.13 84395 0.18 113125 0.25 205709 0.45 461361
Outside100 74891 0.15 92503 0.18 77553 0.15 267957 0.52 512904
## Rows: 40 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (5): archive_version_year, Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Deaths yearly, rows (hq), columns (branch)
year avg_eal_tercile_parent Low Low_pct Moderate Moderate_pct High High_pct Outside100 Outside100_pct Total
2012 Low 5402 0.23 4353 0.18 3472 0.15 10713 0.45 23940
2012 Moderate 3246 0.14 7341 0.31 3893 0.16 9513 0.40 23993
2012 High 6269 0.14 8402 0.18 10843 0.24 20383 0.44 45897
2012 Outside100 6609 0.15 8500 0.19 6899 0.16 21818 0.50 43826
2013 Low 5272 0.21 4594 0.18 3975 0.16 11757 0.46 25598
2013 Moderate 4064 0.15 7826 0.28 4629 0.17 11365 0.41 27884
2013 High 4761 0.13 7104 0.19 9633 0.25 16498 0.43 37996
2013 Outside100 6725 0.15 8249 0.19 7169 0.16 22379 0.50 44522
2014 Low 5667 0.21 4703 0.18 3986 0.15 12510 0.47 26866
2014 Moderate 4683 0.14 9123 0.27 5213 0.16 14173 0.43 33192
2014 High 5146 0.12 7514 0.18 10159 0.24 19104 0.46 41923
2014 Outside100 7829 0.15 10096 0.19 8332 0.16 27282 0.51 53539
2015 Low 6717 0.20 5699 0.17 4550 0.14 16710 0.50 33676
2015 Moderate 5216 0.14 10224 0.27 5862 0.15 16934 0.44 38236
2015 High 4897 0.12 7496 0.18 10154 0.25 18215 0.45 40762
2015 Outside100 7185 0.14 9129 0.18 7767 0.16 25960 0.52 50041
2016 Low 8070 0.22 6475 0.18 5140 0.14 17219 0.47 36904
2016 Moderate 5563 0.15 10759 0.28 5977 0.16 15995 0.42 38294
2016 High 6830 0.13 9677 0.18 13169 0.25 22792 0.43 52468
2016 Outside100 9707 0.15 11528 0.18 9476 0.15 32547 0.51 63258
2017 Low 8810 0.22 7300 0.18 5744 0.14 18235 0.45 40089
2017 Moderate 5745 0.14 11717 0.28 6528 0.16 17241 0.42 41231
2017 High 9711 0.13 13821 0.19 17825 0.24 32777 0.44 74134
2017 Outside100 10348 0.15 12509 0.18 10310 0.15 35675 0.52 68842
2018 Low 7218 0.22 5658 0.17 4488 0.14 15744 0.48 33108
2018 Moderate 4506 0.14 9438 0.28 5013 0.15 14188 0.43 33145
2018 High 5063 0.12 7975 0.18 10326 0.24 19757 0.46 43121
2018 Outside100 10407 0.14 12660 0.17 10253 0.14 39535 0.54 72855
2019 Low 6444 0.20 5712 0.18 4659 0.15 15127 0.47 31942
2019 Moderate 4426 0.14 8366 0.26 4760 0.15 14045 0.44 31597
2019 High 5454 0.12 7762 0.18 10893 0.25 20093 0.45 44202
2019 Outside100 6532 0.15 7836 0.18 6448 0.14 23828 0.53 44644
2020 Low 4196 0.21 3277 0.16 2845 0.14 9796 0.49 20114
2020 Moderate 2924 0.14 5889 0.28 3038 0.15 8967 0.43 20818
2020 High 4164 0.13 6104 0.18 8645 0.26 14112 0.43 33025
2020 Outside100 4102 0.13 5181 0.17 4684 0.15 16920 0.55 30887
2021 Low 7546 0.19 6799 0.17 5793 0.14 20105 0.50 40243
2021 Moderate 3785 0.14 8025 0.29 4287 0.15 11605 0.42 27702
2021 High 5837 0.12 8540 0.18 11478 0.24 21978 0.46 47833
2021 Outside100 5447 0.13 6815 0.17 6215 0.15 22013 0.54 40490
## Rows: 4 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (4): Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Expansions, rows (hq), columns (branch)
avg_eal_tercile_parent Low Low_pct Moderate Moderate_pct High High_pct Outside100 Outside100_pct Total
Low 5331 0.21 4463 0.18 3412 0.14 11875 0.47 25081
Moderate 2857 0.14 5810 0.29 3049 0.15 8185 0.41 19901
High 3343 0.13 4861 0.18 6970 0.26 11131 0.42 26305
Outside100 4421 0.15 5441 0.19 4497 0.15 14954 0.51 29313
## Rows: 40 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (5): archive_version_year, Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Expansions yearly, rows (hq), columns (branch)
year avg_eal_tercile_parent Low Low_pct Moderate Moderate_pct High High_pct Outside100 Outside100_pct Total
2013 Low 673 0.19 630 0.18 558 0.16 1592 0.46 3453
2013 Moderate 570 0.15 986 0.26 657 0.18 1521 0.41 3734
2013 High 678 0.13 1057 0.20 1356 0.26 2186 0.41 5277
2013 Outside100 952 0.16 1114 0.19 1028 0.18 2775 0.47 5869
2014 Low 237 0.26 177 0.19 138 0.15 360 0.39 912
2014 Moderate 205 0.14 453 0.31 237 0.16 576 0.39 1471
2014 High 202 0.11 314 0.17 498 0.28 789 0.44 1803
2014 Outside100 272 0.16 325 0.19 273 0.16 846 0.49 1716
2015 Low 355 0.19 297 0.16 214 0.11 1036 0.54 1902
2015 Moderate 173 0.14 398 0.32 169 0.14 494 0.40 1234
2015 High 201 0.14 244 0.17 351 0.25 621 0.44 1417
2015 Outside100 212 0.13 301 0.18 245 0.15 879 0.54 1637
2016 Low 1289 0.25 929 0.18 775 0.15 2083 0.41 5076
2016 Moderate 849 0.14 1763 0.29 929 0.15 2612 0.42 6153
2016 High 1014 0.12 1502 0.18 2282 0.28 3463 0.42 8261
2016 Outside100 1221 0.14 1622 0.19 1408 0.17 4214 0.50 8465
2017 Low 313 0.26 217 0.18 154 0.13 539 0.44 1223
2017 Moderate 172 0.14 390 0.32 176 0.14 483 0.40 1221
2017 High 230 0.13 321 0.18 449 0.26 742 0.43 1742
2017 Outside100 309 0.16 359 0.18 288 0.15 987 0.51 1943
2018 Low 250 0.25 183 0.18 135 0.13 451 0.44 1019
2018 Moderate 180 0.16 362 0.32 180 0.16 413 0.36 1135
2018 High 163 0.12 249 0.19 366 0.27 561 0.42 1339
2018 Outside100 408 0.17 490 0.20 341 0.14 1227 0.50 2466
2019 Low 131 0.23 101 0.18 71 0.12 269 0.47 572
2019 Moderate 97 0.15 172 0.26 96 0.15 287 0.44 652
2019 High 119 0.15 148 0.18 210 0.26 339 0.42 816
2019 Outside100 124 0.16 156 0.20 112 0.14 402 0.51 794
2020 Low 155 0.22 126 0.18 104 0.15 309 0.45 694
2020 Moderate 79 0.14 158 0.29 80 0.15 231 0.42 548
2020 High 107 0.12 173 0.20 238 0.28 341 0.40 859
2020 Outside100 120 0.16 153 0.20 106 0.14 388 0.51 767
2021 Low 210 0.23 149 0.16 170 0.18 393 0.43 922
2021 Moderate 83 0.17 158 0.32 54 0.11 201 0.41 496
2021 High 121 0.14 152 0.18 217 0.26 360 0.42 850
2021 Outside100 114 0.13 148 0.16 145 0.16 494 0.55 901
2022 Low 1718 0.18 1654 0.18 1093 0.12 4843 0.52 9308
2022 Moderate 449 0.14 970 0.30 471 0.14 1367 0.42 3257
2022 High 508 0.13 701 0.18 1003 0.25 1729 0.44 3941
2022 Outside100 689 0.14 773 0.16 551 0.12 2742 0.58 4755

Matrix Yearly Charts

table <- read_csv("matrix_births_yearly.csv") %>%
  gather(key="branch_risk",value="count",-archive_version_year,-avg_eal_tercile_parent) %>%
  rename(parent_risk=avg_eal_tercile_parent) %>%
  mutate(label=paste0(parent_risk,"(HQ) - ",branch_risk, "(Branch)"))
## Rows: 40 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (5): archive_version_year, Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ggplot(table)+geom_density_ridges(alpha=0.5,bandwidth = 0.1,stat = "identity",aes(archive_version_year,label,height=count))+
  ggtitle("Births")
## Warning in geom_density_ridges(alpha = 0.5, bandwidth = 0.1, stat = "identity",
## : Ignoring unknown parameters: `bandwidth`

table <- read_csv("matrix_deaths_yearly.csv")%>%
  gather(key="branch_risk",value="count",-archive_version_year,-avg_eal_tercile_parent) %>%
  rename(parent_risk=avg_eal_tercile_parent) %>%
  mutate(label=paste0(parent_risk,"(HQ) - ",branch_risk, "(Branch)"))
## Rows: 40 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (5): archive_version_year, Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ggplot(table)+geom_density_ridges(alpha=0.5,bandwidth = 0.1,stat = "identity",aes(archive_version_year,label,height=count))+
  ggtitle("Deaths")
## Warning in geom_density_ridges(alpha = 0.5, bandwidth = 0.1, stat = "identity",
## : Ignoring unknown parameters: `bandwidth`

table <- read_csv("matrix_expansion_yearly.csv")%>%
  gather(key="branch_risk",value="count",-archive_version_year,-avg_eal_tercile_parent) %>%
  rename(parent_risk=avg_eal_tercile_parent) %>%
  mutate(label=paste0(parent_risk,"(HQ) - ",branch_risk, "(Branch)"))
## Rows: 40 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): avg_eal_tercile_parent
## dbl (5): archive_version_year, Low, Moderate, High, <NA>
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ggplot(table)+geom_density_ridges(alpha=0.5,bandwidth = 0.1,stat = "identity",aes(archive_version_year,label,height=count))+
  ggtitle("Expansions")
## Warning in geom_density_ridges(alpha = 0.5, bandwidth = 0.1, stat = "identity",
## : Ignoring unknown parameters: `bandwidth`