Background

Analysis of feeder visitation data for helmeted honeyeaters (hehos) at Yellingbo. We are comparing feeder use by wild-bred (Yellingbo; YB) versus captive-bred (Healesville Sanctuary; HS) individuals. The data come from cameras placed near individual feeders that enable recording of visits to feeders by colour-banded individuals, and interactions between those individuals and other birds.

Note: the feeder data has not been systematically captured. This means some feeders have had more monitoring than others, and feeders have been recorded at different times of the day. Also, individuals may vary in how long they were present at the study site (and thus were able to make use of feeders). This should be kept in mind when interpreting the results.

Approach

Question 1: do wild- and captive-bred birds differ in their use of feeders at Yellingbo?

library(ggplot2)
library(dplyr)
library(plotrix)
library(reshape2)
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE, tidy = TRUE)

Data

The data are in a file with 2,377 feeder visits by 29 individuals as rows. For each row there are four descriptor columns: Feeder_ID (the feeder’s label), Bird_ID (bird identity), Bird_origin (HS or YB) and Sex (M/F). There are 13 captive-bred (HS) and 16 wild-bred (YB) birds in the dataset.

#load data
feeder<-read.csv("data/bird.feeder.csv")
head(feeder)
##   Feeder_ID  Bird_ID Bird_origin Sex
## 1       A01   LB/O-B          YB   F
## 2       A01   LB/O-B          YB   F
## 3       A01 M/W/DB-S          HS   M
## 4       A01  R/W/M-S          HS   M
## 5       A01  R/W/M-S          HS   M
## 6       A01   R/Y-LB          YB   M

Results

We first create a summary file that shows how many feeders were visited by each bird (range 1-13).

#sumarise number of unique feeders visited by each bird
feeder.use<- feeder %>%
  group_by(Bird_origin, Bird_ID, Sex)%>%
  summarise(count_distinct = n_distinct(Feeder_ID))
feeder.use
## # A tibble: 29 × 4
## # Groups:   Bird_origin, Bird_ID [29]
##    Bird_origin Bird_ID    Sex   count_distinct
##    <chr>       <chr>      <chr>          <int>
##  1 HS          DB/M/DB-S  M                 12
##  2 HS          DB/M/Y-S   M                  9
##  3 HS          DB/Y/LG-S  M                 11
##  4 HS          LB/M/LG-S  F                 10
##  5 HS          LG/DB/LG-S M                 11
##  6 HS          LG/R/LB-S  M                  8
##  7 HS          LG/R/Y-S   F                  7
##  8 HS          M/LG/M-S   M                 13
##  9 HS          M/W/DB-S   M                 12
## 10 HS          R/DB/LG-S  M                  9
## # ℹ 19 more rows

We can see the full range, with one bird recorded only at a single feeder, and one bird recorded at all 13 feeders.

What about the number of feeder visits made by each individual?

#total number visits to all feeders for each bird
bird.visits<- feeder %>%
  group_by(Bird_origin, Bird_ID, Sex)%>%
  summarise(n = n()) %>%
  mutate(sum(n))
bird.visits
## # A tibble: 29 × 5
## # Groups:   Bird_origin, Bird_ID [29]
##    Bird_origin Bird_ID    Sex       n `sum(n)`
##    <chr>       <chr>      <chr> <int>    <int>
##  1 HS          DB/M/DB-S  M        91       91
##  2 HS          DB/M/Y-S   M       131      131
##  3 HS          DB/Y/LG-S  M       128      128
##  4 HS          LB/M/LG-S  F       121      121
##  5 HS          LG/DB/LG-S M       176      176
##  6 HS          LG/R/LB-S  M        38       38
##  7 HS          LG/R/Y-S   F       104      104
##  8 HS          M/LG/M-S   M       285      285
##  9 HS          M/W/DB-S   M       164      164
## 10 HS          R/DB/LG-S  M        53       53
## # ℹ 19 more rows

The number of total visits recorded ranges from 6 to 285. We can also break this down by feeder.

#number of visits to each feeder by individual birds
feeder.visits<-feeder%>% count(Bird_origin, Bird_ID, Feeder_ID)
feeder.visits
##     Bird_origin     Bird_ID Feeder_ID   n
## 1            HS   DB/M/DB-S       A01   3
## 2            HS   DB/M/DB-S       A02  24
## 3            HS   DB/M/DB-S       A03   8
## 4            HS   DB/M/DB-S       A04   6
## 5            HS   DB/M/DB-S       A06   8
## 6            HS   DB/M/DB-S       A07   2
## 7            HS   DB/M/DB-S       A08   8
## 8            HS   DB/M/DB-S       A10  13
## 9            HS   DB/M/DB-S       A11  10
## 10           HS   DB/M/DB-S       A12   4
## 11           HS   DB/M/DB-S       A13   2
## 12           HS   DB/M/DB-S       A14   3
## 13           HS    DB/M/Y-S       A02  35
## 14           HS    DB/M/Y-S       A03  72
## 15           HS    DB/M/Y-S       A04   5
## 16           HS    DB/M/Y-S       A06   7
## 17           HS    DB/M/Y-S       A07   7
## 18           HS    DB/M/Y-S       A10   1
## 19           HS    DB/M/Y-S       A11   1
## 20           HS    DB/M/Y-S       A13   2
## 21           HS    DB/M/Y-S       A14   1
## 22           HS   DB/Y/LG-S       A01   4
## 23           HS   DB/Y/LG-S       A02  60
## 24           HS   DB/Y/LG-S       A03  12
## 25           HS   DB/Y/LG-S       A04  18
## 26           HS   DB/Y/LG-S       A06  17
## 27           HS   DB/Y/LG-S       A08   2
## 28           HS   DB/Y/LG-S       A10   5
## 29           HS   DB/Y/LG-S       A11   2
## 30           HS   DB/Y/LG-S       A12   4
## 31           HS   DB/Y/LG-S       A13   3
## 32           HS   DB/Y/LG-S       A14   1
## 33           HS   LB/M/LG-S       A01   3
## 34           HS   LB/M/LG-S       A02   1
## 35           HS   LB/M/LG-S       A03   2
## 36           HS   LB/M/LG-S       A04   1
## 37           HS   LB/M/LG-S       A06   3
## 38           HS   LB/M/LG-S       A07  85
## 39           HS   LB/M/LG-S       A10  12
## 40           HS   LB/M/LG-S       A11   3
## 41           HS   LB/M/LG-S       A12   6
## 42           HS   LB/M/LG-S       A14   5
## 43           HS  LG/DB/LG-S       A01   8
## 44           HS  LG/DB/LG-S       A02  23
## 45           HS  LG/DB/LG-S       A03   4
## 46           HS  LG/DB/LG-S       A04   3
## 47           HS  LG/DB/LG-S       A06   4
## 48           HS  LG/DB/LG-S       A07  77
## 49           HS  LG/DB/LG-S       A08  11
## 50           HS  LG/DB/LG-S       A09   1
## 51           HS  LG/DB/LG-S       A10  37
## 52           HS  LG/DB/LG-S       A11   7
## 53           HS  LG/DB/LG-S       A13   1
## 54           HS   LG/R/LB-S       A02   3
## 55           HS   LG/R/LB-S       A03   3
## 56           HS   LG/R/LB-S       A04   4
## 57           HS   LG/R/LB-S       A06   1
## 58           HS   LG/R/LB-S       A07  13
## 59           HS   LG/R/LB-S       A10  11
## 60           HS   LG/R/LB-S       A11   2
## 61           HS   LG/R/LB-S       A13   1
## 62           HS    LG/R/Y-S       A01   3
## 63           HS    LG/R/Y-S       A02   9
## 64           HS    LG/R/Y-S       A03  82
## 65           HS    LG/R/Y-S       A06   4
## 66           HS    LG/R/Y-S       A07   3
## 67           HS    LG/R/Y-S       A11   1
## 68           HS    LG/R/Y-S       A13   2
## 69           HS    M/LG/M-S       A01   4
## 70           HS    M/LG/M-S       A02 223
## 71           HS    M/LG/M-S       A03   8
## 72           HS    M/LG/M-S       A04  11
## 73           HS    M/LG/M-S       A06   2
## 74           HS    M/LG/M-S       A07   2
## 75           HS    M/LG/M-S       A08   3
## 76           HS    M/LG/M-S       A09   1
## 77           HS    M/LG/M-S       A10   9
## 78           HS    M/LG/M-S       A11   2
## 79           HS    M/LG/M-S       A12  12
## 80           HS    M/LG/M-S       A13   2
## 81           HS    M/LG/M-S       A14   6
## 82           HS    M/W/DB-S       A01   4
## 83           HS    M/W/DB-S       A02  99
## 84           HS    M/W/DB-S       A03  10
## 85           HS    M/W/DB-S       A04  11
## 86           HS    M/W/DB-S       A06   2
## 87           HS    M/W/DB-S       A07   1
## 88           HS    M/W/DB-S       A08   1
## 89           HS    M/W/DB-S       A10  15
## 90           HS    M/W/DB-S       A11   2
## 91           HS    M/W/DB-S       A12  12
## 92           HS    M/W/DB-S       A13   2
## 93           HS    M/W/DB-S       A14   5
## 94           HS   R/DB/LG-S       A02   1
## 95           HS   R/DB/LG-S       A03   7
## 96           HS   R/DB/LG-S       A04   1
## 97           HS   R/DB/LG-S       A07  17
## 98           HS   R/DB/LG-S       A09   1
## 99           HS   R/DB/LG-S       A10  14
## 100          HS   R/DB/LG-S       A11   4
## 101          HS   R/DB/LG-S       A12   1
## 102          HS   R/DB/LG-S       A14   7
## 103          HS     R/W/M-S       A01   8
## 104          HS     R/W/M-S       A02  32
## 105          HS     R/W/M-S       A03   5
## 106          HS     R/W/M-S       A04   4
## 107          HS     R/W/M-S       A06   2
## 108          HS     R/W/M-S       A07  29
## 109          HS     R/W/M-S       A08   6
## 110          HS     R/W/M-S       A10  46
## 111          HS     R/W/M-S       A11   6
## 112          HS     R/W/M-S       A12   1
## 113          HS    Y/LB/Y-S       A01   1
## 114          HS    Y/LB/Y-S       A02  79
## 115          HS    Y/LB/Y-S       A03   5
## 116          HS    Y/LB/Y-S       A04   4
## 117          HS    Y/LB/Y-S       A06   4
## 118          HS    Y/LB/Y-S       A07   1
## 119          HS    Y/LB/Y-S       A10   8
## 120          HS    Y/LB/Y-S       A11   3
## 121          HS    Y/LB/Y-S       A12   1
## 122          HS    Y/LB/Y-S       A13   1
## 123          HS    Y/LB/Y-S       A14   4
## 124          HS    Y/R/LB-S       A01   4
## 125          HS    Y/R/LB-S       A02  46
## 126          HS    Y/R/LB-S       A03   4
## 127          HS    Y/R/LB-S       A04  25
## 128          HS    Y/R/LB-S       A06  10
## 129          HS    Y/R/LB-S       A07   1
## 130          HS    Y/R/LB-S       A08   1
## 131          HS    Y/R/LB-S       A10   6
## 132          HS    Y/R/LB-S       A11   1
## 133          HS    Y/R/LB-S       A12   6
## 134          HS    Y/R/LB-S       A13   4
## 135          HS    Y/R/LB-S       A14   4
## 136          YB    DB/M-W/S       A01  13
## 137          YB    DB/M-W/S       A02   8
## 138          YB    DB/M-W/S       A03   1
## 139          YB    DB/M-W/S       A04   2
## 140          YB    DB/M-W/S       A06  11
## 141          YB    DB/M-W/S       A07   3
## 142          YB    DB/M-W/S       A10   2
## 143          YB    DB/M-W/S       A11   6
## 144          YB    DB/M-W/S       A12   2
## 145          YB    DB/M-W/S       A13   3
## 146          YB    DB/M-W/S       A14   7
## 147          YB  Gold/LG-LG       A01   5
## 148          YB  Gold/LG-LG       A04   4
## 149          YB  Gold/LG-LG       A06   4
## 150          YB  Gold/LG-LG       A07   4
## 151          YB  Gold/LG-LG       A08   4
## 152          YB  Gold/LG-LG       A10   2
## 153          YB  Gold/LG-LG       A11   2
## 154          YB   Gold/W-LB       A01   7
## 155          YB   Gold/W-LB       A02  17
## 156          YB   Gold/W-LB       A07   4
## 157          YB   Gold/W-LB       A08   1
## 158          YB   Gold/W-LB       A10  14
## 159          YB   Gold/W-LB       A11   6
## 160          YB   Gold/W-LB       A13   1
## 161          YB   Gold/W-LB       A14   2
## 162          YB LB/DB/LB-LB       A01   1
## 163          YB LB/DB/LB-LB       A02   1
## 164          YB LB/DB/LB-LB       A03   1
## 165          YB LB/DB/LB-LB       A07   1
## 166          YB LB/DB/LB-LB       A08  89
## 167          YB LB/DB/LB-LB       A09   1
## 168          YB LB/DB/LB-LB       A11   2
## 169          YB LB/DB/LB-LB       A13   2
## 170          YB LB/DB/LB-LB       A14   5
## 171          YB      LB/O-B       A01  13
## 172          YB      LB/O-B       A02   8
## 173          YB      LB/O-B       A07   1
## 174          YB      LB/O-B       A08   1
## 175          YB      LB/O-B       A09   1
## 176          YB      LB/O-B       A10   2
## 177          YB      LB/O-B       A12   1
## 178          YB      LB/O-B       A14   6
## 179          YB   LB/R/LB-R       A10   2
## 180          YB   LB/R/LB-R       A14   9
## 181          YB     LB/Y-LB       A02   3
## 182          YB     LB/Y-LB       A10   9
## 183          YB     LB/Y-LB       A11   3
## 184          YB     LB/Y-LB       A12   5
## 185          YB  LG/Gold-LB       A03   1
## 186          YB  LG/Gold-LB       A11   7
## 187          YB   M/R/M-W/S       A01   1
## 188          YB   M/R/M-W/S       A02   1
## 189          YB   M/R/M-W/S       A03   1
## 190          YB   M/R/M-W/S       A04  31
## 191          YB   M/R/M-W/S       A06  10
## 192          YB   M/R/M-W/S       A10   2
## 193          YB   M/R/M-W/S       A11   2
## 194          YB       O/M-P       A01   6
## 195          YB       O/M-P       A02   7
## 196          YB       O/M-P       A04   2
## 197          YB       O/M-P       A06   1
## 198          YB       O/M-P       A07   3
## 199          YB       O/M-P       A08   3
## 200          YB       O/M-P       A09   1
## 201          YB       O/M-P       A10  18
## 202          YB       O/M-P       A11   1
## 203          YB       O/M-P       A12   2
## 204          YB       O/M-P       A14   4
## 205          YB    P/LG/P-G       A12   1
## 206          YB    P/LG/P-G       A13   3
## 207          YB    P/LG/P-G       A14   7
## 208          YB      P/O-LB       A11   6
## 209          YB      R/W-LB       A08   1
## 210          YB      R/W-LB       A10   3
## 211          YB      R/W-LB       A11   1
## 212          YB      R/W-LB       A12   5
## 213          YB      R/W-LB       A14   1
## 214          YB      R/Y-LB       A01   3
## 215          YB      R/Y-LB       A02   6
## 216          YB      R/Y-LB       A04   2
## 217          YB      R/Y-LB       A07   3
## 218          YB      R/Y-LB       A08  84
## 219          YB      R/Y-LB       A09   1
## 220          YB      R/Y-LB       A10  17
## 221          YB      R/Y-LB       A11   3
## 222          YB      R/Y-LB       A12   1
## 223          YB      R/Y-LB       A13   1
## 224          YB      R/Y-LB       A14   8
## 225          YB     W/M/W-S       A01  20
## 226          YB     W/M/W-S       A02  85
## 227          YB     W/M/W-S       A03   1
## 228          YB     W/M/W-S       A04   3
## 229          YB     W/M/W-S       A07   9
## 230          YB     W/M/W-S       A08  11
## 231          YB     W/M/W-S       A10  15
## 232          YB     W/M/W-S       A13   2
## 233          YB     W/M/W-S       A14   4
## 234          YB     Y/LG-LB       A04   1
## 235          YB     Y/LG-LB       A06   1
## 236          YB     Y/LG-LB       A08   8

Number of visits to a single feeder by an individual ranges from 1 to 223!

To enable us to display various matrices, we create some subsets of the data (separate datafiles for HS and YB birds) and calculate proportions of visits across feeders.

#create subsets for each bird origin
HS.feeder.visits<-subset(feeder.visits, Bird_origin=="HS")
YB.feeder.visits<-subset(feeder.visits, Bird_origin=="YB")

#summarise and calculate proportions of visits across feeders for all birds
feeder.visits<-feeder %>%
  group_by(Bird_ID, Feeder_ID) %>%
  summarise(n = n()) %>%
  mutate(freq = n / sum(n))

Let’s look at feeder visits in the form of a matrix: all visits to all feeders by all birds.

#plot a matrix showing visit counts to each feeder by each bird
visit.counts<-acast(feeder.visits, Bird_ID ~ Feeder_ID , value.var='n', 
      fun.aggregate=sum, margins=TRUE)
visit.counts
##             A01 A02 A03 A04 A06 A07 A08 A09 A10 A11 A12 A13 A14 (all)
## DB/M-W/S     13   8   1   2  11   3   0   0   2   6   2   3   7    58
## DB/M/DB-S     3  24   8   6   8   2   8   0  13  10   4   2   3    91
## DB/M/Y-S      0  35  72   5   7   7   0   0   1   1   0   2   1   131
## DB/Y/LG-S     4  60  12  18  17   0   2   0   5   2   4   3   1   128
## Gold/LG-LG    5   0   0   4   4   4   4   0   2   2   0   0   0    25
## Gold/W-LB     7  17   0   0   0   4   1   0  14   6   0   1   2    52
## LB/DB/LB-LB   1   1   1   0   0   1  89   1   0   2   0   2   5   103
## LB/M/LG-S     3   1   2   1   3  85   0   0  12   3   6   0   5   121
## LB/O-B       13   8   0   0   0   1   1   1   2   0   1   0   6    33
## LB/R/LB-R     0   0   0   0   0   0   0   0   2   0   0   0   9    11
## LB/Y-LB       0   3   0   0   0   0   0   0   9   3   5   0   0    20
## LG/DB/LG-S    8  23   4   3   4  77  11   1  37   7   0   1   0   176
## LG/Gold-LB    0   0   1   0   0   0   0   0   0   7   0   0   0     8
## LG/R/LB-S     0   3   3   4   1  13   0   0  11   2   0   1   0    38
## LG/R/Y-S      3   9  82   0   4   3   0   0   0   1   0   2   0   104
## M/LG/M-S      4 223   8  11   2   2   3   1   9   2  12   2   6   285
## M/R/M-W/S     1   1   1  31  10   0   0   0   2   2   0   0   0    48
## M/W/DB-S      4  99  10  11   2   1   1   0  15   2  12   2   5   164
## O/M-P         6   7   0   2   1   3   3   1  18   1   2   0   4    48
## P/LG/P-G      0   0   0   0   0   0   0   0   0   0   1   3   7    11
## P/O-LB        0   0   0   0   0   0   0   0   0   6   0   0   0     6
## R/DB/LG-S     0   1   7   1   0  17   0   1  14   4   1   0   7    53
## R/W-LB        0   0   0   0   0   0   1   0   3   1   5   0   1    11
## R/W/M-S       8  32   5   4   2  29   6   0  46   6   1   0   0   139
## R/Y-LB        3   6   0   2   0   3  84   1  17   3   1   1   8   129
## W/M/W-S      20  85   1   3   0   9  11   0  15   0   0   2   4   150
## Y/LB/Y-S      1  79   5   4   4   1   0   0   8   3   1   1   4   111
## Y/LG-LB       0   0   0   1   1   0   8   0   0   0   0   0   0    10
## Y/R/LB-S      4  46   4  25  10   1   1   0   6   1   6   4   4   112
## (all)       111 771 227 138  91 266 234   7 263  83  64  32  89  2376

There’s clearly variation in the ‘popularity’ of feeders, with overall visit counts ranging from 7 to 771. Keep in mind that this could simply be due to different feeders being recorded for different amounts of time. [If we know deployment time for each feeder, we can correct for that]

We can also visualise this as proportions.

#plot a matrix showing proportion of visits to feeders visited by each bird
visit.props<-acast(feeder.visits, Bird_ID ~ Feeder_ID , value.var='freq', 
                   fun.aggregate=sum, margins=TRUE)
visit.props
##                     A01         A02         A03         A04         A06
## DB/M-W/S    0.224137931 0.137931034 0.017241379 0.034482759 0.189655172
## DB/M/DB-S   0.032967033 0.263736264 0.087912088 0.065934066 0.087912088
## DB/M/Y-S    0.000000000 0.267175573 0.549618321 0.038167939 0.053435115
## DB/Y/LG-S   0.031250000 0.468750000 0.093750000 0.140625000 0.132812500
## Gold/LG-LG  0.200000000 0.000000000 0.000000000 0.160000000 0.160000000
## Gold/W-LB   0.134615385 0.326923077 0.000000000 0.000000000 0.000000000
## LB/DB/LB-LB 0.009708738 0.009708738 0.009708738 0.000000000 0.000000000
## LB/M/LG-S   0.024793388 0.008264463 0.016528926 0.008264463 0.024793388
## LB/O-B      0.393939394 0.242424242 0.000000000 0.000000000 0.000000000
## LB/R/LB-R   0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## LB/Y-LB     0.000000000 0.150000000 0.000000000 0.000000000 0.000000000
## LG/DB/LG-S  0.045454545 0.130681818 0.022727273 0.017045455 0.022727273
## LG/Gold-LB  0.000000000 0.000000000 0.125000000 0.000000000 0.000000000
## LG/R/LB-S   0.000000000 0.078947368 0.078947368 0.105263158 0.026315789
## LG/R/Y-S    0.028846154 0.086538462 0.788461538 0.000000000 0.038461538
## M/LG/M-S    0.014035088 0.782456140 0.028070175 0.038596491 0.007017544
## M/R/M-W/S   0.020833333 0.020833333 0.020833333 0.645833333 0.208333333
## M/W/DB-S    0.024390244 0.603658537 0.060975610 0.067073171 0.012195122
## O/M-P       0.125000000 0.145833333 0.000000000 0.041666667 0.020833333
## P/LG/P-G    0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## P/O-LB      0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## R/DB/LG-S   0.000000000 0.018867925 0.132075472 0.018867925 0.000000000
## R/W-LB      0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## R/W/M-S     0.057553957 0.230215827 0.035971223 0.028776978 0.014388489
## R/Y-LB      0.023255814 0.046511628 0.000000000 0.015503876 0.000000000
## W/M/W-S     0.133333333 0.566666667 0.006666667 0.020000000 0.000000000
## Y/LB/Y-S    0.009009009 0.711711712 0.045045045 0.036036036 0.036036036
## Y/LG-LB     0.000000000 0.000000000 0.000000000 0.100000000 0.100000000
## Y/R/LB-S    0.035714286 0.410714286 0.035714286 0.223214286 0.089285714
## (all)       1.568837632 5.708550426 2.155247442 1.805351601 1.224202436
##                     A07         A08         A09         A10         A11
## DB/M-W/S    0.051724138 0.000000000 0.000000000 0.034482759 0.103448276
## DB/M/DB-S   0.021978022 0.087912088 0.000000000 0.142857143 0.109890110
## DB/M/Y-S    0.053435115 0.000000000 0.000000000 0.007633588 0.007633588
## DB/Y/LG-S   0.000000000 0.015625000 0.000000000 0.039062500 0.015625000
## Gold/LG-LG  0.160000000 0.160000000 0.000000000 0.080000000 0.080000000
## Gold/W-LB   0.076923077 0.019230769 0.000000000 0.269230769 0.115384615
## LB/DB/LB-LB 0.009708738 0.864077670 0.009708738 0.000000000 0.019417476
## LB/M/LG-S   0.702479339 0.000000000 0.000000000 0.099173554 0.024793388
## LB/O-B      0.030303030 0.030303030 0.030303030 0.060606061 0.000000000
## LB/R/LB-R   0.000000000 0.000000000 0.000000000 0.181818182 0.000000000
## LB/Y-LB     0.000000000 0.000000000 0.000000000 0.450000000 0.150000000
## LG/DB/LG-S  0.437500000 0.062500000 0.005681818 0.210227273 0.039772727
## LG/Gold-LB  0.000000000 0.000000000 0.000000000 0.000000000 0.875000000
## LG/R/LB-S   0.342105263 0.000000000 0.000000000 0.289473684 0.052631579
## LG/R/Y-S    0.028846154 0.000000000 0.000000000 0.000000000 0.009615385
## M/LG/M-S    0.007017544 0.010526316 0.003508772 0.031578947 0.007017544
## M/R/M-W/S   0.000000000 0.000000000 0.000000000 0.041666667 0.041666667
## M/W/DB-S    0.006097561 0.006097561 0.000000000 0.091463415 0.012195122
## O/M-P       0.062500000 0.062500000 0.020833333 0.375000000 0.020833333
## P/LG/P-G    0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## P/O-LB      0.000000000 0.000000000 0.000000000 0.000000000 1.000000000
## R/DB/LG-S   0.320754717 0.000000000 0.018867925 0.264150943 0.075471698
## R/W-LB      0.000000000 0.090909091 0.000000000 0.272727273 0.090909091
## R/W/M-S     0.208633094 0.043165468 0.000000000 0.330935252 0.043165468
## R/Y-LB      0.023255814 0.651162791 0.007751938 0.131782946 0.023255814
## W/M/W-S     0.060000000 0.073333333 0.000000000 0.100000000 0.000000000
## Y/LB/Y-S    0.009009009 0.000000000 0.000000000 0.072072072 0.027027027
## Y/LG-LB     0.000000000 0.800000000 0.000000000 0.000000000 0.000000000
## Y/R/LB-S    0.008928571 0.008928571 0.000000000 0.053571429 0.008928571
## (all)       2.621199185 2.986271688 0.096655554 3.629514455 2.953682479
##                     A12         A13         A14 (all)
## DB/M-W/S    0.034482759 0.051724138 0.120689655     1
## DB/M/DB-S   0.043956044 0.021978022 0.032967033     1
## DB/M/Y-S    0.000000000 0.015267176 0.007633588     1
## DB/Y/LG-S   0.031250000 0.023437500 0.007812500     1
## Gold/LG-LG  0.000000000 0.000000000 0.000000000     1
## Gold/W-LB   0.000000000 0.019230769 0.038461538     1
## LB/DB/LB-LB 0.000000000 0.019417476 0.048543689     1
## LB/M/LG-S   0.049586777 0.000000000 0.041322314     1
## LB/O-B      0.030303030 0.000000000 0.181818182     1
## LB/R/LB-R   0.000000000 0.000000000 0.818181818     1
## LB/Y-LB     0.250000000 0.000000000 0.000000000     1
## LG/DB/LG-S  0.000000000 0.005681818 0.000000000     1
## LG/Gold-LB  0.000000000 0.000000000 0.000000000     1
## LG/R/LB-S   0.000000000 0.026315789 0.000000000     1
## LG/R/Y-S    0.000000000 0.019230769 0.000000000     1
## M/LG/M-S    0.042105263 0.007017544 0.021052632     1
## M/R/M-W/S   0.000000000 0.000000000 0.000000000     1
## M/W/DB-S    0.073170732 0.012195122 0.030487805     1
## O/M-P       0.041666667 0.000000000 0.083333333     1
## P/LG/P-G    0.090909091 0.272727273 0.636363636     1
## P/O-LB      0.000000000 0.000000000 0.000000000     1
## R/DB/LG-S   0.018867925 0.000000000 0.132075472     1
## R/W-LB      0.454545455 0.000000000 0.090909091     1
## R/W/M-S     0.007194245 0.000000000 0.000000000     1
## R/Y-LB      0.007751938 0.007751938 0.062015504     1
## W/M/W-S     0.000000000 0.013333333 0.026666667     1
## Y/LB/Y-S    0.009009009 0.009009009 0.036036036     1
## Y/LG-LB     0.000000000 0.000000000 0.000000000     1
## Y/R/LB-S    0.053571429 0.035714286 0.035714286     1
## (all)       1.238370361 0.560031962 2.452084779    29

Let’s now create separate matrices for HS and YB birds. First, the HS (captive-bred) birds.

HS.visit.counts<-acast(HS.feeder.visits, Bird_ID ~ Feeder_ID , value.var='n', 
                    fun.aggregate=sum, margins=TRUE)
HS.visit.counts
##            A01 A02 A03 A04 A06 A07 A08 A09 A10 A11 A12 A13 A14 (all)
## DB/M/DB-S    3  24   8   6   8   2   8   0  13  10   4   2   3    91
## DB/M/Y-S     0  35  72   5   7   7   0   0   1   1   0   2   1   131
## DB/Y/LG-S    4  60  12  18  17   0   2   0   5   2   4   3   1   128
## LB/M/LG-S    3   1   2   1   3  85   0   0  12   3   6   0   5   121
## LG/DB/LG-S   8  23   4   3   4  77  11   1  37   7   0   1   0   176
## LG/R/LB-S    0   3   3   4   1  13   0   0  11   2   0   1   0    38
## LG/R/Y-S     3   9  82   0   4   3   0   0   0   1   0   2   0   104
## M/LG/M-S     4 223   8  11   2   2   3   1   9   2  12   2   6   285
## M/W/DB-S     4  99  10  11   2   1   1   0  15   2  12   2   5   164
## R/DB/LG-S    0   1   7   1   0  17   0   1  14   4   1   0   7    53
## R/W/M-S      8  32   5   4   2  29   6   0  46   6   1   0   0   139
## Y/LB/Y-S     1  79   5   4   4   1   0   0   8   3   1   1   4   111
## Y/R/LB-S     4  46   4  25  10   1   1   0   6   1   6   4   4   112
## (all)       42 635 222  93  64 238  32   3 177  44  47  20  36  1653

Then the YB (wild-bred) birds.

YB.visit.counts<-acast(YB.feeder.visits, Bird_ID ~ Feeder_ID , value.var='n', 
                    fun.aggregate=sum, margins=TRUE)
YB.visit.counts
##             A01 A02 A03 A04 A06 A07 A08 A09 A10 A11 A12 A13 A14 (all)
## DB/M-W/S     13   8   1   2  11   3   0   0   2   6   2   3   7    58
## Gold/LG-LG    5   0   0   4   4   4   4   0   2   2   0   0   0    25
## Gold/W-LB     7  17   0   0   0   4   1   0  14   6   0   1   2    52
## LB/DB/LB-LB   1   1   1   0   0   1  89   1   0   2   0   2   5   103
## LB/O-B       13   8   0   0   0   1   1   1   2   0   1   0   6    33
## LB/R/LB-R     0   0   0   0   0   0   0   0   2   0   0   0   9    11
## LB/Y-LB       0   3   0   0   0   0   0   0   9   3   5   0   0    20
## LG/Gold-LB    0   0   1   0   0   0   0   0   0   7   0   0   0     8
## M/R/M-W/S     1   1   1  31  10   0   0   0   2   2   0   0   0    48
## O/M-P         6   7   0   2   1   3   3   1  18   1   2   0   4    48
## P/LG/P-G      0   0   0   0   0   0   0   0   0   0   1   3   7    11
## P/O-LB        0   0   0   0   0   0   0   0   0   6   0   0   0     6
## R/W-LB        0   0   0   0   0   0   1   0   3   1   5   0   1    11
## R/Y-LB        3   6   0   2   0   3  84   1  17   3   1   1   8   129
## W/M/W-S      20  85   1   3   0   9  11   0  15   0   0   2   4   150
## Y/LG-LB       0   0   0   1   1   0   8   0   0   0   0   0   0    10
## (all)        69 136   5  45  27  28 202   4  86  39  17  12  53   723

Interesting to note that all feeders were visited by both captive-bred (HS) and wild-bred (YB) individuals. Comparing these matrices, it seems clear that the 13 captive-bred (HS) individuals are using the feeders much more frequently than the 16 wild-bred (YB) birds (1,653 visits by 13 birds versus 723 visits by 16 birds). We can do an ANOVA to look at the means for each group.

First, number of feeders used.

##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Bird_origin  1  118.9  118.93    14.7 0.000686 ***
## Residuals   27  218.5    8.09                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tables of means
## Grand mean
##          
## 8.137931 
## 
##  Bird_origin 
##       HS    YB
##     10.4  6.31
## rep 13.0 16.00

The captive-bred (HS) birds are using 10.4 feeders on average, compared to 6.3 for the wild-bred (YB) birds.

Does this differ by sex?

##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## Bird_origin      1 118.93  118.93  14.350 0.000852 ***
## Sex              1  11.31   11.31   1.365 0.253667    
## Bird_origin:Sex  1   0.00    0.00   0.000 1.000000    
## Residuals       25 207.20    8.29                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tables of means
## Grand mean
##          
## 8.137931 
## 
##  Bird_origin 
##       HS    YB
##     10.4  6.31
## rep 13.0 16.00
## 
##  Sex 
##        F     M
##      7.5  8.66
## rep 13.0 16.00
## 
##  Bird_origin:Sex 
##            Sex
## Bird_origin F     M    
##         HS   9.33 10.70
##         rep  3.00 10.00
##         YB   5.80  7.17
##         rep 10.00  6.00

No significant effect of Sex. Plot the data.

What about the overall number of visits to feeders?

##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Bird_origin  1  48188   48188   17.33 0.000287 ***
## Residuals   27  75066    2780                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tables of means
## Grand mean
##          
## 81.93103 
## 
##  Bird_origin 
##      HS   YB
##     127 45.2
## rep  13 16.0

Around 127 feeder visits on average per captive-bred (HS) bird, compared to 45 per wild-bred (YB) bird.

Does this differ by sex?

##                 Df Sum Sq Mean Sq F value  Pr(>F)    
## Bird_origin      1  48188   48188  16.834 0.00038 ***
## Sex              1   3439    3439   1.201 0.28349    
## Bird_origin:Sex  1     63      63   0.022 0.88280    
## Residuals       25  71564    2863                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tables of means
## Grand mean
##          
## 81.93103 
## 
##  Bird_origin 
##      HS   YB
##     127 45.2
## rep  13 16.0
## 
##  Sex 
##        F  M
##     70.8 91
## rep 13.0 16
## 
##  Bird_origin:Sex 
##            Sex
## Bird_origin F     M    
##         HS  112.0 131.7
##         rep   3.0  10.0
##         YB   35.3  61.7
##         rep  10.0   6.0

No significant effect of Sex. Plot the data.

No difference.

Conclusions

Overall, the data suggest more frequent visitation to feeders and greater variety of feeders used by HS (captive-bred) birds. This assumes there are no systematic differences between HS and YB birds in terms of how long they were present at the site (although if there is a bias, it might be expected to favour YB birds in terms of longer site use, which if anything, would make the pattern even more robust).