Hate Crimes

Here I input the data

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#tinytex::install_tinytex()
#library(tinytex)
hatecrimes <- read_csv("hateCrimes2010.csv")
Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Here I clean up the data by making them lower case and separating them

names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
head(hatecrimes)
# A tibble: 6 × 44
  county    year crimetype          `anti-male` `anti-female` `anti-transgender`
  <chr>    <dbl> <chr>                    <dbl>         <dbl>              <dbl>
1 Albany    2016 Crimes Against Pe…           0             0                  0
2 Albany    2016 Property Crimes              0             0                  0
3 Allegany  2016 Property Crimes              0             0                  0
4 Bronx     2016 Crimes Against Pe…           0             0                  4
5 Bronx     2016 Property Crimes              0             0                  0
6 Broome    2016 Crimes Against Pe…           0             0                  0
# ℹ 38 more variables: `anti-genderidentityexpression` <dbl>,
#   `anti-age*` <dbl>, `anti-white` <dbl>, `anti-black` <dbl>,
#   `anti-americanindian/alaskannative` <dbl>, `anti-asian` <dbl>,
#   `anti-nativehawaiian/pacificislander` <dbl>,
#   `anti-multi-racialgroups` <dbl>, `anti-otherrace` <dbl>,
#   `anti-jewish` <dbl>, `anti-catholic` <dbl>, `anti-protestant` <dbl>,
#   `anti-islamic(muslim)` <dbl>, `anti-multi-religiousgroups` <dbl>, …

Here I get the summary Of the data

summary(hatecrimes)
    county               year       crimetype           anti-male       
 Length:423         Min.   :2010   Length:423         Min.   :0.000000  
 Class :character   1st Qu.:2011   Class :character   1st Qu.:0.000000  
 Mode  :character   Median :2013   Mode  :character   Median :0.000000  
                    Mean   :2013                      Mean   :0.007092  
                    3rd Qu.:2015                      3rd Qu.:0.000000  
                    Max.   :2016                      Max.   :1.000000  
  anti-female      anti-transgender  anti-genderidentityexpression
 Min.   :0.00000   Min.   :0.00000   Min.   :0.00000              
 1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000              
 Median :0.00000   Median :0.00000   Median :0.00000              
 Mean   :0.01655   Mean   :0.04728   Mean   :0.05674              
 3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000              
 Max.   :1.00000   Max.   :5.00000   Max.   :3.00000              
   anti-age*         anti-white        anti-black    
 Min.   :0.00000   Min.   : 0.0000   Min.   : 0.000  
 1st Qu.:0.00000   1st Qu.: 0.0000   1st Qu.: 0.000  
 Median :0.00000   Median : 0.0000   Median : 1.000  
 Mean   :0.05201   Mean   : 0.3357   Mean   : 1.761  
 3rd Qu.:0.00000   3rd Qu.: 0.0000   3rd Qu.: 2.000  
 Max.   :9.00000   Max.   :11.0000   Max.   :18.000  
 anti-americanindian/alaskannative   anti-asian    
 Min.   :0.000000                  Min.   :0.0000  
 1st Qu.:0.000000                  1st Qu.:0.0000  
 Median :0.000000                  Median :0.0000  
 Mean   :0.007092                  Mean   :0.1773  
 3rd Qu.:0.000000                  3rd Qu.:0.0000  
 Max.   :1.000000                  Max.   :8.0000  
 anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
 Min.   :0                           Min.   :0.00000         Min.   :0     
 1st Qu.:0                           1st Qu.:0.00000         1st Qu.:0     
 Median :0                           Median :0.00000         Median :0     
 Mean   :0                           Mean   :0.08511         Mean   :0     
 3rd Qu.:0                           3rd Qu.:0.00000         3rd Qu.:0     
 Max.   :0                           Max.   :3.00000         Max.   :0     
  anti-jewish     anti-catholic     anti-protestant   anti-islamic(muslim)
 Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
 1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
 Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
 Mean   : 3.981   Mean   : 0.2695   Mean   :0.02364   Mean   : 0.4704     
 3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
 Max.   :82.000   Max.   :12.0000   Max.   :1.00000   Max.   :10.0000     
 anti-multi-religiousgroups anti-atheism/agnosticism
 Min.   : 0.00000           Min.   :0               
 1st Qu.: 0.00000           1st Qu.:0               
 Median : 0.00000           Median :0               
 Mean   : 0.07565           Mean   :0               
 3rd Qu.: 0.00000           3rd Qu.:0               
 Max.   :10.00000           Max.   :0               
 anti-religiouspracticegenerally anti-otherreligion anti-buddhist
 Min.   :0.000000                Min.   :0.000      Min.   :0    
 1st Qu.:0.000000                1st Qu.:0.000      1st Qu.:0    
 Median :0.000000                Median :0.000      Median :0    
 Mean   :0.007092                Mean   :0.104      Mean   :0    
 3rd Qu.:0.000000                3rd Qu.:0.000      3rd Qu.:0    
 Max.   :2.000000                Max.   :4.000      Max.   :0    
 anti-easternorthodox(greek,russian,etc.)   anti-hindu      
 Min.   :0.000000                         Min.   :0.000000  
 1st Qu.:0.000000                         1st Qu.:0.000000  
 Median :0.000000                         Median :0.000000  
 Mean   :0.002364                         Mean   :0.002364  
 3rd Qu.:0.000000                         3rd Qu.:0.000000  
 Max.   :1.000000                         Max.   :1.000000  
 anti-jehovahswitness  anti-mormon anti-otherchristian   anti-sikh
 Min.   :0            Min.   :0    Min.   :0.00000     Min.   :0  
 1st Qu.:0            1st Qu.:0    1st Qu.:0.00000     1st Qu.:0  
 Median :0            Median :0    Median :0.00000     Median :0  
 Mean   :0            Mean   :0    Mean   :0.01655     Mean   :0  
 3rd Qu.:0            3rd Qu.:0    3rd Qu.:0.00000     3rd Qu.:0  
 Max.   :0            Max.   :0    Max.   :3.00000     Max.   :0  
 anti-hispanic       anti-arab       anti-otherethnicity/nationalorigin
 Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000                   
 1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000                   
 Median : 0.0000   Median :0.00000   Median : 0.0000                   
 Mean   : 0.3735   Mean   :0.06619   Mean   : 0.2837                   
 3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000                   
 Max.   :17.0000   Max.   :2.00000   Max.   :19.0000                   
 anti-non-hispanic*  anti-gaymale    anti-gayfemale   anti-gay(maleandfemale)
 Min.   :0          Min.   : 0.000   Min.   :0.0000   Min.   :0.0000         
 1st Qu.:0          1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.0000         
 Median :0          Median : 0.000   Median :0.0000   Median :0.0000         
 Mean   :0          Mean   : 1.499   Mean   :0.2411   Mean   :0.1017         
 3rd Qu.:0          3rd Qu.: 1.000   3rd Qu.:0.0000   3rd Qu.:0.0000         
 Max.   :0          Max.   :36.000   Max.   :8.0000   Max.   :4.0000         
 anti-heterosexual  anti-bisexual      anti-physicaldisability
 Min.   :0.000000   Min.   :0.000000   Min.   :0.00000        
 1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.00000        
 Median :0.000000   Median :0.000000   Median :0.00000        
 Mean   :0.002364   Mean   :0.004728   Mean   :0.01182        
 3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.00000        
 Max.   :1.000000   Max.   :1.000000   Max.   :1.00000        
 anti-mentaldisability totalincidents    totalvictims    totaloffenders  
 Min.   :0.000000      Min.   :  1.00   Min.   :  1.00   Min.   :  1.00  
 1st Qu.:0.000000      1st Qu.:  1.00   1st Qu.:  1.00   1st Qu.:  1.00  
 Median :0.000000      Median :  3.00   Median :  3.00   Median :  3.00  
 Mean   :0.009456      Mean   : 10.09   Mean   : 10.48   Mean   : 11.77  
 3rd Qu.:0.000000      3rd Qu.: 10.00   3rd Qu.: 10.00   3rd Qu.: 11.00  
 Max.   :1.000000      Max.   :101.00   Max.   :106.00   Max.   :113.00  

Here I seperate the values that have atleast 9

hatecrimes2 <- hatecrimes |>
  select(county, year, 'anti-black', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', `anti-multi-religiousgroups`, 'anti-gaymale', 'anti-hispanic', `anti-otherethnicity/nationalorigin`) |>
  group_by(county, year)
head(hatecrimes2)
# A tibble: 6 × 12
# Groups:   county, year [4]
  county    year `anti-black` `anti-white` `anti-jewish` `anti-catholic`
  <chr>    <dbl>        <dbl>        <dbl>         <dbl>           <dbl>
1 Albany    2016            1            0             0               0
2 Albany    2016            2            0             0               0
3 Allegany  2016            1            0             0               0
4 Bronx     2016            0            1             0               0
5 Bronx     2016            0            1             1               0
6 Broome    2016            1            0             0               0
# ℹ 6 more variables: `anti-age*` <dbl>, `anti-islamic(muslim)` <dbl>,
#   `anti-multi-religiousgroups` <dbl>, `anti-gaymale` <dbl>,
#   `anti-hispanic` <dbl>, `anti-otherethnicity/nationalorigin` <dbl>

We check the dimensions.

dim(hatecrimes2)
[1] 423  12

Here I go see the summary of hate crimes 2.

summary(hatecrimes2)
    county               year        anti-black       anti-white     
 Length:423         Min.   :2010   Min.   : 0.000   Min.   : 0.0000  
 Class :character   1st Qu.:2011   1st Qu.: 0.000   1st Qu.: 0.0000  
 Mode  :character   Median :2013   Median : 1.000   Median : 0.0000  
                    Mean   :2013   Mean   : 1.761   Mean   : 0.3357  
                    3rd Qu.:2015   3rd Qu.: 2.000   3rd Qu.: 0.0000  
                    Max.   :2016   Max.   :18.000   Max.   :11.0000  
  anti-jewish     anti-catholic       anti-age*       anti-islamic(muslim)
 Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
 1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
 Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
 Mean   : 3.981   Mean   : 0.2695   Mean   :0.05201   Mean   : 0.4704     
 3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
 Max.   :82.000   Max.   :12.0000   Max.   :9.00000   Max.   :10.0000     
 anti-multi-religiousgroups  anti-gaymale    anti-hispanic    
 Min.   : 0.00000           Min.   : 0.000   Min.   : 0.0000  
 1st Qu.: 0.00000           1st Qu.: 0.000   1st Qu.: 0.0000  
 Median : 0.00000           Median : 0.000   Median : 0.0000  
 Mean   : 0.07565           Mean   : 1.499   Mean   : 0.3735  
 3rd Qu.: 0.00000           3rd Qu.: 1.000   3rd Qu.: 0.0000  
 Max.   :10.00000           Max.   :36.000   Max.   :17.0000  
 anti-otherethnicity/nationalorigin
 Min.   : 0.0000                   
 1st Qu.: 0.0000                   
 Median : 0.0000                   
 Mean   : 0.2837                   
 3rd Qu.: 0.0000                   
 Max.   :19.0000                   

Now We will Convert the format to long, we will move the names to victim cat and move the numbers to crime count

hatelong <- hatecrimes2 |> 
    pivot_longer(
        cols = 3:12,
        names_to = "victim_cat",
        values_to = "crimecount")

Now we create a facet Plot.

hatecrimplot <-hatelong |> 
  ggplot(aes(year, crimecount))+
  geom_point()+
  aes(color = victim_cat)+
  facet_wrap(~victim_cat)
hatecrimplot

I decided to filter out Anti-Jewish and Anti-Gaymale and Anti-Hispanic

hatenew <- hatelong |>
  filter( victim_cat %in% c("anti-hispanic", "anti-jewish", "anti-gaymale"))|>
  group_by(year, county) |>
  arrange(desc(crimecount))
hatenew
# A tibble: 1,269 × 4
# Groups:   year, county [277]
   county   year victim_cat  crimecount
   <chr>   <dbl> <chr>            <dbl>
 1 Kings    2012 anti-jewish         82
 2 Kings    2016 anti-jewish         51
 3 Suffolk  2014 anti-jewish         48
 4 Suffolk  2012 anti-jewish         48
 5 Kings    2011 anti-jewish         44
 6 Kings    2013 anti-jewish         41
 7 Kings    2010 anti-jewish         39
 8 Nassau   2011 anti-jewish         38
 9 Suffolk  2013 anti-jewish         37
10 Nassau   2016 anti-jewish         36
# ℹ 1,259 more rows

Here I plot the hate crimes together.

plot2 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=year, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot2

I do want to try doing my own thing and i see in 2010 anti Hispanic hate crimes was higher so I wanted to see whats causing it and in what counties.

As following the tutorial I deduct the counties so I have less of them.

I do this by grouping by year and county.

counties <- hatenew |>
  group_by(year, county)|>
  summarize(sum = sum(crimecount)) |>
  arrange(desc(sum))
`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.

I then display the counties.

counties
# A tibble: 277 × 3
# Groups:   year [7]
    year county     sum
   <dbl> <chr>    <dbl>
 1  2012 Kings      127
 2  2010 Kings       97
 3  2016 Kings       96
 4  2013 Kings       91
 5  2014 Kings       90
 6  2015 Kings       84
 7  2016 New York    80
 8  2011 Kings       78
 9  2013 New York    70
10  2012 Suffolk     66
# ℹ 267 more rows

I then want to list the counties with the highest incidents.

counties2 <- hatenew |>
  group_by(county)|>
  summarize(sum = sum(crimecount)) |>
  slice_max(order_by = sum, n=5)
counties2
# A tibble: 5 × 2
  county     sum
  <chr>    <dbl>
1 Kings      663
2 New York   416
3 Suffolk    297
4 Nassau     240
5 Queens     221

From there Id like to graph it.

plot4 <- hatenew |>
  filter(county %in% c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(y = "Number of Hate Crime Incidents",
       title = "5 Counties in NY with Highest Incidents of Hate Crimes",
       subtitle = "Between 2010-2016", 
       fill = "Hate Crime Type",
      caption = "Source: NY State Division of Criminal Justice Services")
plot4

I then bring in the census for new york populations.

nypop <- read_csv("newyorkpopulation.csv")
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

I then want to clean it up to match the other dataset. I will do this by renameing Geography to County.

nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop |>
  rename(county = Geography) |>
  gather("year", "population", 2:8) 
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
# A tibble: 6 × 3
  county                  year population
  <chr>                  <dbl>      <dbl>
1 Albany , New York       2010     304078
2 Allegany , New York     2010      48949
3 Bronx , New York        2010    1388240
4 Broome , New York       2010     200469
5 Cattaraugus , New York  2010      80249
6 Cayuga , New York       2010      79844

From here I want to focus on 2010 because thats when anti hispanic hate crimes were at their highest so what I do is filter by 2010.

nypoplong12 <- nypoplong |>
  filter(year == 2010) |>
  arrange(desc(population)) |>
  head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
# A tibble: 10 × 3
   county       year population
   <chr>       <dbl>      <dbl>
 1 Kings        2010    2510240
 2 Queens       2010    2235310
 3 New York     2010    1588530
 4 Suffolk      2010    1494747
 5 Bronx        2010    1388240
 6 Nassau       2010    1341879
 7 Westchester  2010     950588
 8 Erie         2010     919220
 9 Monroe       2010     744959
10 Richmond     2010     469706

I then filter the hate crimes with just 2010 data.

counties12 <- counties |>
  filter(year == 2010) |>
  arrange(desc(sum)) 
counties12
# A tibble: 44 × 3
# Groups:   year [1]
    year county        sum
   <dbl> <chr>       <dbl>
 1  2010 Kings          97
 2  2010 New York       53
 3  2010 Nassau         46
 4  2010 Queens         31
 5  2010 Suffolk        30
 6  2010 Richmond       27
 7  2010 Bronx          21
 8  2010 Westchester    16
 9  2010 Rockland       15
10  2010 Erie           10
# ℹ 34 more rows

I then join the two data sets together.

datajoin <- counties12 |>
  full_join(nypoplong12, by=c("county", "year"))
datajoin
# A tibble: 44 × 4
# Groups:   year [1]
    year county        sum population
   <dbl> <chr>       <dbl>      <dbl>
 1  2010 Kings          97    2510240
 2  2010 New York       53    1588530
 3  2010 Nassau         46    1341879
 4  2010 Queens         31    2235310
 5  2010 Suffolk        30    1494747
 6  2010 Richmond       27     469706
 7  2010 Bronx          21    1388240
 8  2010 Westchester    16     950588
 9  2010 Rockland       15         NA
10  2010 Erie           10     919220
# ℹ 34 more rows

I then Calculate the rate of incidents per 100,000 and arrange it to be decsending.

datajoinrate <- datajoin |>
  mutate(rate = sum/population*100000) |>
  arrange(desc(rate))
datajoinrate
# A tibble: 44 × 5
# Groups:   year [1]
    year county        sum population  rate
   <dbl> <chr>       <dbl>      <dbl> <dbl>
 1  2010 Richmond       27     469706 5.75 
 2  2010 Kings          97    2510240 3.86 
 3  2010 Nassau         46    1341879 3.43 
 4  2010 New York       53    1588530 3.34 
 5  2010 Suffolk        30    1494747 2.01 
 6  2010 Westchester    16     950588 1.68 
 7  2010 Bronx          21    1388240 1.51 
 8  2010 Queens         31    2235310 1.39 
 9  2010 Erie           10     919220 1.09 
10  2010 Monroe          5     744959 0.671
# ℹ 34 more rows

I then see when crime rates happen the most.

dt <- datajoinrate[,c("county","rate")]
dt
# A tibble: 44 × 2
   county       rate
   <chr>       <dbl>
 1 Richmond    5.75 
 2 Kings       3.86 
 3 Nassau      3.43 
 4 New York    3.34 
 5 Suffolk     2.01 
 6 Westchester 1.68 
 7 Bronx       1.51 
 8 Queens      1.39 
 9 Erie        1.09 
10 Monroe      0.671
# ℹ 34 more rows

The countries with the highest population do have the highest rates of hate crimes which makes sense.

From here I want to experiment. I want to create a subset with just race crimes

race <- hatecrimes |>
  pivot_longer(
      cols = 4:44,
      names_to = "victim_cat",
      values_to = "crimecount") |>
filter(victim_cat %in% c("anti-white" , "anti-black", "anti-americanindian/alaskannative", "anti-asian", "anti-nativehawaiian/pacificislander", "multi-racialgroups", "anti-otherrace"))
race
# A tibble: 2,538 × 5
   county  year crimetype              victim_cat                     crimecount
   <chr>  <dbl> <chr>                  <chr>                               <dbl>
 1 Albany  2016 Crimes Against Persons anti-white                              0
 2 Albany  2016 Crimes Against Persons anti-black                              1
 3 Albany  2016 Crimes Against Persons anti-americanindian/alaskanna…          0
 4 Albany  2016 Crimes Against Persons anti-asian                              0
 5 Albany  2016 Crimes Against Persons anti-nativehawaiian/pacificis…          0
 6 Albany  2016 Crimes Against Persons anti-otherrace                          0
 7 Albany  2016 Property Crimes        anti-white                              0
 8 Albany  2016 Property Crimes        anti-black                              2
 9 Albany  2016 Property Crimes        anti-americanindian/alaskanna…          0
10 Albany  2016 Property Crimes        anti-asian                              0
# ℹ 2,528 more rows

Essay section:

I feel the positive aspects of this data set is it covers a lot however I feel there may be errors due to certain county having a higher population.

I think I would like to study how population effects the number of hate crimes. I think I would also like to study why there is a spike in certain hate crimes at a certain time like jewish in 2012.

I think as a follow up Id like to see what group has the most hate crimes like lgbtq or race. I think after I figure out this I want to make a graph showing the rate of each group that got hate crimed.