Chapter 3: Classification using Nearest Neighbors

Example: Classifying Cancer Samples

Step 2: Exploring and preparing the data

# import the CSV file
wbcd <- read.csv("C:/Users/User/OneDrive/Desktop/1 - STU - DATA ANALYTICS/7 - DMML/CA#12/wisc_bc_data.csv", stringsAsFactors = FALSE)

# examine the structure of the wbcd data frame
str(wbcd)
## 'data.frame':    569 obs. of  32 variables:
##  $ id               : int  87139402 8910251 905520 868871 9012568 906539 925291 87880 862989 89827 ...
##  $ diagnosis        : chr  "B" "B" "B" "B" ...
##  $ radius_mean      : num  12.3 10.6 11 11.3 15.2 ...
##  $ texture_mean     : num  12.4 18.9 16.8 13.4 13.2 ...
##  $ perimeter_mean   : num  78.8 69.3 70.9 73 97.7 ...
##  $ area_mean        : num  464 346 373 385 712 ...
##  $ smoothness_mean  : num  0.1028 0.0969 0.1077 0.1164 0.0796 ...
##  $ compactness_mean : num  0.0698 0.1147 0.078 0.1136 0.0693 ...
##  $ concavity_mean   : num  0.0399 0.0639 0.0305 0.0464 0.0339 ...
##  $ points_mean      : num  0.037 0.0264 0.0248 0.048 0.0266 ...
##  $ symmetry_mean    : num  0.196 0.192 0.171 0.177 0.172 ...
##  $ dimension_mean   : num  0.0595 0.0649 0.0634 0.0607 0.0554 ...
##  $ radius_se        : num  0.236 0.451 0.197 0.338 0.178 ...
##  $ texture_se       : num  0.666 1.197 1.387 1.343 0.412 ...
##  $ perimeter_se     : num  1.67 3.43 1.34 1.85 1.34 ...
##  $ area_se          : num  17.4 27.1 13.5 26.3 17.7 ...
##  $ smoothness_se    : num  0.00805 0.00747 0.00516 0.01127 0.00501 ...
##  $ compactness_se   : num  0.0118 0.03581 0.00936 0.03498 0.01485 ...
##  $ concavity_se     : num  0.0168 0.0335 0.0106 0.0219 0.0155 ...
##  $ points_se        : num  0.01241 0.01365 0.00748 0.01965 0.00915 ...
##  $ symmetry_se      : num  0.0192 0.035 0.0172 0.0158 0.0165 ...
##  $ dimension_se     : num  0.00225 0.00332 0.0022 0.00344 0.00177 ...
##  $ radius_worst     : num  13.5 11.9 12.4 11.9 16.2 ...
##  $ texture_worst    : num  15.6 22.9 26.4 15.8 15.7 ...
##  $ perimeter_worst  : num  87 78.3 79.9 76.5 104.5 ...
##  $ area_worst       : num  549 425 471 434 819 ...
##  $ smoothness_worst : num  0.139 0.121 0.137 0.137 0.113 ...
##  $ compactness_worst: num  0.127 0.252 0.148 0.182 0.174 ...
##  $ concavity_worst  : num  0.1242 0.1916 0.1067 0.0867 0.1362 ...
##  $ points_worst     : num  0.0939 0.0793 0.0743 0.0861 0.0818 ...
##  $ symmetry_worst   : num  0.283 0.294 0.3 0.21 0.249 ...
##  $ dimension_worst  : num  0.0677 0.0759 0.0788 0.0678 0.0677 ...
# drop the id feature
wbcd <- wbcd[-1]
# table of diagnosis
table(wbcd$diagnosis)
## 
##   B   M 
## 357 212
# recode diagnosis as a factor
wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"),
                         labels = c("Benign", "Malignant"))
# table or proportions with more informative labels
round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)
## 
##    Benign Malignant 
##      62.7      37.3
# summarize three numeric features
summary(wbcd[c("radius_mean", "area_mean", "smoothness_mean")])
##   radius_mean       area_mean      smoothness_mean  
##  Min.   : 6.981   Min.   : 143.5   Min.   :0.05263  
##  1st Qu.:11.700   1st Qu.: 420.3   1st Qu.:0.08637  
##  Median :13.370   Median : 551.1   Median :0.09587  
##  Mean   :14.127   Mean   : 654.9   Mean   :0.09636  
##  3rd Qu.:15.780   3rd Qu.: 782.7   3rd Qu.:0.10530  
##  Max.   :28.110   Max.   :2501.0   Max.   :0.16340
# create normalization function
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}
# test normalization function - result should be identical
normalize(c(1, 2, 3, 4, 5))
## [1] 0.00 0.25 0.50 0.75 1.00
normalize(c(10, 20, 30, 40, 50))
## [1] 0.00 0.25 0.50 0.75 1.00
# normalize the wbcd data
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))
# confirm that normalization worked
summary(wbcd_n$area_mean)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.1174  0.1729  0.2169  0.2711  1.0000
# create training and test data
wbcd_train <- wbcd_n[1:369, ]
wbcd_test <- wbcd_n[370:569, ]
# create labels for training and test data

wbcd_train_labels <- wbcd[1:369, 1]
wbcd_test_labels <- wbcd[370:569, 1]

Step 3: Training a model on the data

# load the "class" library
library(class)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
                      cl = wbcd_train_labels, k = 21)

Step 4: Evaluating model performance

# load the "gmodels" library
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.2.3
# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
           prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       127 |         1 |       128 | 
##                  |     0.992 |     0.008 |     0.640 | 
##                  |     0.948 |     0.015 |           | 
##                  |     0.635 |     0.005 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         7 |        65 |        72 | 
##                  |     0.097 |     0.903 |     0.360 | 
##                  |     0.052 |     0.985 |           | 
##                  |     0.035 |     0.325 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       134 |        66 |       200 | 
##                  |     0.670 |     0.330 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
## Step 5: Improving model performance

# use the scale() function to z-score standardize a data frame
wbcd_z <- as.data.frame(scale(wbcd[-1]))

# confirm that the transformation was applied correctly
summary(wbcd_z$area_mean)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -1.4532 -0.6666 -0.2949  0.0000  0.3632  5.2459
# create training and test datasets
wbcd_train <- wbcd_z[1:369, ]
wbcd_test <- wbcd_z[370:569, ]

# re-classify test cases
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
                      cl = wbcd_train_labels, k = 21)
# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
           prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       128 |         0 |       128 | 
##                  |     1.000 |     0.000 |     0.640 | 
##                  |     0.928 |     0.000 |           | 
##                  |     0.640 |     0.000 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |        10 |        62 |        72 | 
##                  |     0.139 |     0.861 |     0.360 | 
##                  |     0.072 |     1.000 |           | 
##                  |     0.050 |     0.310 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       138 |        62 |       200 | 
##                  |     0.690 |     0.310 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
# try several different values of k
wbcd_train <- wbcd_n[1:369, ]
wbcd_test <- wbcd_n[370:569, ]
#K=1
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=1)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       124 |         4 |       128 | 
##                  |     0.969 |     0.031 |     0.640 | 
##                  |     0.976 |     0.055 |           | 
##                  |     0.620 |     0.020 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         3 |        69 |        72 | 
##                  |     0.042 |     0.958 |     0.360 | 
##                  |     0.024 |     0.945 |           | 
##                  |     0.015 |     0.345 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       127 |        73 |       200 | 
##                  |     0.635 |     0.365 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
#k=5
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=5)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       127 |         1 |       128 | 
##                  |     0.992 |     0.008 |     0.640 | 
##                  |     0.977 |     0.014 |           | 
##                  |     0.635 |     0.005 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         3 |        69 |        72 | 
##                  |     0.042 |     0.958 |     0.360 | 
##                  |     0.023 |     0.986 |           | 
##                  |     0.015 |     0.345 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       130 |        70 |       200 | 
##                  |     0.650 |     0.350 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=11)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       128 |         0 |       128 | 
##                  |     1.000 |     0.000 |     0.640 | 
##                  |     0.962 |     0.000 |           | 
##                  |     0.640 |     0.000 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         5 |        67 |        72 | 
##                  |     0.069 |     0.931 |     0.360 | 
##                  |     0.038 |     1.000 |           | 
##                  |     0.025 |     0.335 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       133 |        67 |       200 | 
##                  |     0.665 |     0.335 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=15)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       127 |         1 |       128 | 
##                  |     0.992 |     0.008 |     0.640 | 
##                  |     0.962 |     0.015 |           | 
##                  |     0.635 |     0.005 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         5 |        67 |        72 | 
##                  |     0.069 |     0.931 |     0.360 | 
##                  |     0.038 |     0.985 |           | 
##                  |     0.025 |     0.335 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       132 |        68 |       200 | 
##                  |     0.660 |     0.340 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=21)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       127 |         1 |       128 | 
##                  |     0.992 |     0.008 |     0.640 | 
##                  |     0.948 |     0.015 |           | 
##                  |     0.635 |     0.005 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         7 |        65 |        72 | 
##                  |     0.097 |     0.903 |     0.360 | 
##                  |     0.052 |     0.985 |           | 
##                  |     0.035 |     0.325 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       134 |        66 |       200 | 
##                  |     0.670 |     0.330 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=27)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  200 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |       128 |         0 |       128 | 
##                  |     1.000 |     0.000 |     0.640 | 
##                  |     0.934 |     0.000 |           | 
##                  |     0.640 |     0.000 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         9 |        63 |        72 | 
##                  |     0.125 |     0.875 |     0.360 | 
##                  |     0.066 |     1.000 |           | 
##                  |     0.045 |     0.315 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |       137 |        63 |       200 | 
##                  |     0.685 |     0.315 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
# CALCULATE: PRECISION, ACCURACY, RECALL, F1

# Example actual and predicted classifications
wbcd_test_labels <- c('Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No')
wbcd_test_pred <- c('Yes', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No')

# Create a confusion matrix
conf_matrix <- table(Predicted = wbcd_test_pred, Actual = wbcd_test_labels)

# Calculate metrics
accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix)
precision <- conf_matrix['Yes', 'Yes'] / sum(conf_matrix['Yes', ])
recall <- conf_matrix['Yes', 'Yes'] / sum(conf_matrix[, 'Yes'])
F1 <- 2 * ((precision * recall) / (precision + recall))

# Print the results
cat("Confusion Matrix:\n")
## Confusion Matrix:
print(conf_matrix)
##          Actual
## Predicted No Yes
##       No   3   2
##       Yes  2   3
cat("Accuracy:", accuracy, "\n")
## Accuracy: 0.6
cat("Precision:", precision, "\n")
## Precision: 0.6
cat("Recall:", recall, "\n")
## Recall: 0.6
cat("F1 Score:", F1, "\n")
## F1 Score: 0.6