Data 605 Assignment 3

Noori Selina

  1. What is the rank of matrix A? \[ A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \\ \end{pmatrix} \]
library(matrixcalc)
A <- matrix(c(1, 2, 3, 4, -1, 0, 1, 3, 0, 1, -2, 1, 5, 4, -2, -3), nrow = 4, byrow = TRUE)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
matrix.rank(A)
## [1] 4
  1. Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?

For an mxn matrix where m > n, the maximum rank is limited by the number of columns (n), while the minimum rank, provided the matrix is non-zero, stands at 1, reflecting the presence of at least one linearly independent row or column.

  1. What is the rank of matrix B? \[ B = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \\ \end{pmatrix} \]
B <- matrix(c(1, 2, 1 , 3, 6, 3, 2, 4, 2), nrow = 3, byrow = TRUE)
B
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2

Here, We are using the qr() function to compute the rank of matrix B, allowing us to access the rank value from the result of qr(B)$rank.

rank_B <- qr(B)$rank
cat("Rank of matrix B:", rank_B, "\n")
## Rank of matrix B: 1

Problem Set 2 Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{pmatrix} \]

To determine the eigenvalues and eigenvectors of matrix \(A\), we start by computing its characteristic polynomial.

The given matrix \(A\) is:

\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} \]

We find the characteristic polynomial by solving the equation:

\[ \text{det}(A - \lambda I) = 0 \]

where \(\lambda\) represents the eigenvalue, \(A\) is the matrix, and \(I\) is the identity matrix.

Substituting \(A\) into the characteristic polynomial equation, we obtain:

\[ \text{det}\left( \begin{pmatrix} 1-\lambda & 2 & 3 \\ 0 & 4-\lambda & 5 \\ 0 & 0 & 6-\lambda \end{pmatrix} \right) = 0 \]

Expanding the determinant, we get:

\[ (1-\lambda)(4-\lambda)(6-\lambda) = 0 \]

Solving this equation yields the eigenvalues \(\lambda\):

\[ \lambda_1 = 1, \quad \lambda_2 = 4, \quad \lambda_3 = 6 \]

These are the eigenvalues of matrix \(A\).

Next, we find the corresponding eigenvectors by substituting each eigenvalue into the equation \((A - \lambda I) \mathbf{v} = \mathbf{0}\), where \(\mathbf{v}\) is the eigenvector.

For \(\lambda_1 = 1\), we have:

\[ (A - \lambda_1 I) \mathbf{v}_1 = \mathbf{0} \]

\[ \begin{pmatrix} 0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{pmatrix} \mathbf{v}_1 = \mathbf{0} \]

From this equation, the corresponding eigenvector \(\mathbf{v}_1\) for \(\lambda_1 = 1\) is \(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\).

Similarly, for \(\lambda_2 = 4\) and \(\lambda_3 = 6\), we find the respective eigenvectors.

Therefore, the eigenvalues of matrix \(A\) are \(\lambda_1 = 1\), \(\lambda_2 = 4\), \(\lambda_3 = 6\), and their corresponding eigenvectors are \(\mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\), \(\mathbf{v}_2 = \begin{pmatrix} 0 \\ 5 \\ -5 \end{pmatrix}\), and \(\mathbf{v}_3 = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}\) respectively.