DATA 110 Hate Crimes Assignment

Author

Alex Veremeychik

Adapted from tutorial by Rachel Saidi

Hate Crimes in NY from 2010-2016

Hate Crimes Dataset

This dataset looks at all types of hate crimes in New York counties by the type of hate crime from 2010 to 2016.

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#tinytex::install_tinytex()
library(tinytex)
setwd("C:/Users/Home/Desktop/DATA110 Data Visualization/HW 3 Hate Crimes")
hatecrimes <- read_csv("hateCrimes2010.csv")
Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean up the data:

Make all headers lowercase and remove spaces

names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
head(hatecrimes)
# A tibble: 6 × 44
  county    year crimetype          `anti-male` `anti-female` `anti-transgender`
  <chr>    <dbl> <chr>                    <dbl>         <dbl>              <dbl>
1 Albany    2016 Crimes Against Pe…           0             0                  0
2 Albany    2016 Property Crimes              0             0                  0
3 Allegany  2016 Property Crimes              0             0                  0
4 Bronx     2016 Crimes Against Pe…           0             0                  4
5 Bronx     2016 Property Crimes              0             0                  0
6 Broome    2016 Crimes Against Pe…           0             0                  0
# ℹ 38 more variables: `anti-genderidentityexpression` <dbl>,
#   `anti-age*` <dbl>, `anti-white` <dbl>, `anti-black` <dbl>,
#   `anti-americanindian/alaskannative` <dbl>, `anti-asian` <dbl>,
#   `anti-nativehawaiian/pacificislander` <dbl>,
#   `anti-multi-racialgroups` <dbl>, `anti-otherrace` <dbl>,
#   `anti-jewish` <dbl>, `anti-catholic` <dbl>, `anti-protestant` <dbl>,
#   `anti-islamic(muslim)` <dbl>, `anti-multi-religiousgroups` <dbl>, …

Select only certain hate-crimes

I decided I would only look at the hate-crime types with a max number of 9 or more. That way I can focus on the most prominent types of hate-crimes.

hatecrimes2 <- hatecrimes |>
  select(county, year, 'anti-black', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', `anti-multi-religiousgroups`, 'anti-gaymale', 'anti-hispanic', `anti-otherethnicity/nationalorigin`) |>
  group_by(county, year)
head(hatecrimes2)
# A tibble: 6 × 12
# Groups:   county, year [4]
  county    year `anti-black` `anti-white` `anti-jewish` `anti-catholic`
  <chr>    <dbl>        <dbl>        <dbl>         <dbl>           <dbl>
1 Albany    2016            1            0             0               0
2 Albany    2016            2            0             0               0
3 Allegany  2016            1            0             0               0
4 Bronx     2016            0            1             0               0
5 Bronx     2016            0            1             1               0
6 Broome    2016            1            0             0               0
# ℹ 6 more variables: `anti-age*` <dbl>, `anti-islamic(muslim)` <dbl>,
#   `anti-multi-religiousgroups` <dbl>, `anti-gaymale` <dbl>,
#   `anti-hispanic` <dbl>, `anti-otherethnicity/nationalorigin` <dbl>

Check the dimensions and the summary to make sure no missing values

Also check the dimensions to count how many variables remain

dim(hatecrimes2)
[1] 423  12
# There are currently 12 variables with 423 rows.
summary(hatecrimes2)
    county               year        anti-black       anti-white     
 Length:423         Min.   :2010   Min.   : 0.000   Min.   : 0.0000  
 Class :character   1st Qu.:2011   1st Qu.: 0.000   1st Qu.: 0.0000  
 Mode  :character   Median :2013   Median : 1.000   Median : 0.0000  
                    Mean   :2013   Mean   : 1.761   Mean   : 0.3357  
                    3rd Qu.:2015   3rd Qu.: 2.000   3rd Qu.: 0.0000  
                    Max.   :2016   Max.   :18.000   Max.   :11.0000  
  anti-jewish     anti-catholic       anti-age*       anti-islamic(muslim)
 Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
 1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
 Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
 Mean   : 3.981   Mean   : 0.2695   Mean   :0.05201   Mean   : 0.4704     
 3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
 Max.   :82.000   Max.   :12.0000   Max.   :9.00000   Max.   :10.0000     
 anti-multi-religiousgroups  anti-gaymale    anti-hispanic    
 Min.   : 0.00000           Min.   : 0.000   Min.   : 0.0000  
 1st Qu.: 0.00000           1st Qu.: 0.000   1st Qu.: 0.0000  
 Median : 0.00000           Median : 0.000   Median : 0.0000  
 Mean   : 0.07565           Mean   : 1.499   Mean   : 0.3735  
 3rd Qu.: 0.00000           3rd Qu.: 1.000   3rd Qu.: 0.0000  
 Max.   :10.00000           Max.   :36.000   Max.   :17.0000  
 anti-otherethnicity/nationalorigin
 Min.   : 0.0000                   
 1st Qu.: 0.0000                   
 Median : 0.0000                   
 Mean   : 0.2837                   
 3rd Qu.: 0.0000                   
 Max.   :19.0000                   

Convert from wide to long format

Look at each set of hate-crimes for each type for each year. Convert the dataset from wide to long with the pivot_longer function. It will take each column’s hate-crime type combine them all into one column called “victim_cat”. Then each cell count will go into the new column, “crimecount”.

Finally, we are only doing this for the quantitative variables, which are in columns 3 - 10. Note the command facet_wrap requires (~) before “victim_cat”.

hatelong <- hatecrimes2 |> 
    pivot_longer(
        cols = 3:12,
        names_to = "victim_cat",
        values_to = "crimecount")

Now use the long format to create a facet plot

hatecrimplot <-hatelong |> 
  ggplot(aes(year, crimecount))+
  geom_point()+
  aes(color = victim_cat)+
  facet_wrap(~victim_cat)
hatecrimplot

Look deeper into crimes against blacks, gay males, and jewish people

From the facet_wrap plot above, anti-black, anti-gay males, and anti-jewish categories seem to have highest rates of offenses reported. Filter out just for those 3 crimes.

hatenew <- hatelong |>
  filter( victim_cat %in% c("anti-black", "anti-jewish", "anti-gaymale"))|>
  group_by(year, county) |>
  arrange(desc(crimecount))
hatenew
# A tibble: 1,269 × 4
# Groups:   year, county [277]
   county   year victim_cat  crimecount
   <chr>   <dbl> <chr>            <dbl>
 1 Kings    2012 anti-jewish         82
 2 Kings    2016 anti-jewish         51
 3 Suffolk  2014 anti-jewish         48
 4 Suffolk  2012 anti-jewish         48
 5 Kings    2011 anti-jewish         44
 6 Kings    2013 anti-jewish         41
 7 Kings    2010 anti-jewish         39
 8 Nassau   2011 anti-jewish         38
 9 Suffolk  2013 anti-jewish         37
10 Nassau   2016 anti-jewish         36
# ℹ 1,259 more rows

Plot these three types of hate crimes together

Use the following commands to finalize your barplot: - position = “dodge” makes side-by-side bars, rather than stacked bars - stat = “identity” allows you to plot each set of bars for each year between 2010 and 2016 - ggtitle gives the plot a title - labs gives a title to the legend

plot2 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=year, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot2

We can see that hate crimes against jews spiked in 2012. All other years were relatively consistent with a slight upward trend. There was also an upward trend in hate crimes against gay males. Finally, there appears to be a downward trend in hate crimes against blacks during this period.

What about the counties?

I have not dealt with the counties, but I think that is the next place to explore. I can make bar graphs by county instead of by year.

plot3 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot3

So many counties

There are too many counties for this plot to make sense, but maybe we can just look at the 5 counties with the highest number of incidents. - use “group_by” to group each row by counties - use summarize to get the total sum of incidents by county - use arrange(desc) to arrange those sums of total incidents by counties in descending order.

counties <- hatenew |>
  group_by(year, county)|>
  summarize(sum = sum(crimecount)) |>
  arrange(desc(sum))
`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.
counties
# A tibble: 277 × 3
# Groups:   year [7]
    year county     sum
   <dbl> <chr>    <dbl>
 1  2012 Kings      136
 2  2010 Kings      110
 3  2016 Kings      101
 4  2013 Kings       96
 5  2014 Kings       94
 6  2015 Kings       90
 7  2011 Kings       86
 8  2016 New York    86
 9  2012 Suffolk     83
10  2013 New York    75
# ℹ 267 more rows

Top 5

To list the 5 counties with the highest total incidents, change group_by to: group_by(county), then use slice_max(order_by = sum, n=5) to list the 5 counties with highest total incidents

counties2 <- hatenew |>
  group_by(county)|>
  summarize(sum = sum(crimecount)) |>
  slice_max(order_by = sum, n=5)
counties2
# A tibble: 5 × 2
  county     sum
  <chr>    <dbl>
1 Kings      713
2 New York   459
3 Suffolk    360
4 Nassau     298
5 Queens     235

Finally, create the barplot above, but only for the 5 counties in 2012 with the highest incidents of hate-crimes. The command “labs” is nice, because you can get a title, subtitle, y-axis label, and legend title, all in one command.

plot4 <- hatenew |>
  filter(county %in% c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(y = "Number of Hate Crime Incidents",
       title = "5 Counties in NY with Highest Incidents of Hate Crimes",
       subtitle = "Between 2010-2016", 
       fill = "Hate Crime Type",
      caption = "Source: NY State Division of Criminal Justice Services")
plot4

How would calculations be affected by looking at hate crimes in counties per year by population densities?

Bring in census data for populations of New York counties. These are estimates from the 2010 census.

setwd("C:/Users/Home/Desktop/DATA110 Data Visualization/HW 3 Hate Crimes")
nypop <- read_csv("newyorkpopulation.csv")
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean the county name to match the other dataset

Rename the variable “Geography” as “county” so that it matches in the other dataset.

nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop |>
  rename(county = Geography) |>
  gather("year", "population", 2:8) 
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
# A tibble: 6 × 3
  county                  year population
  <chr>                  <dbl>      <dbl>
1 Albany , New York       2010     304078
2 Allegany , New York     2010      48949
3 Bronx , New York        2010    1388240
4 Broome , New York       2010     200469
5 Cattaraugus , New York  2010      80249
6 Cayuga , New York       2010      79844

Focus on 2012

Since 2012 had the highest counts of hate crimes, let’s look at the populations of the counties in 2012.

Clean the nypoplong12 variable, county, so that matches the counties12 variable by Cutting off the “, New York” portion of the county listing

nypoplong12 <- nypoplong |>
  filter(year == 2012) |>
  arrange(desc(population)) |>
  head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
# A tibble: 10 × 3
   county       year population
   <chr>       <dbl>      <dbl>
 1 Kings        2012    2572282
 2 Queens       2012    2278024
 3 New York     2012    1625121
 4 Suffolk      2012    1499382
 5 Bronx        2012    1414774
 6 Nassau       2012    1350748
 7 Westchester  2012     961073
 8 Erie         2012     920792
 9 Monroe       2012     748947
10 Richmond     2012     470978

Not surprisingly, 4/5 of the counties with the highest populations also were listed in the counties with the highest number of hate crimes. Only the Bronx, which has the fifth highest population is not in the list with the highest number of total hate crimes over the period from 2010 to 2016.

Recall the total hate crime counts:

Kings 713 New York 459 Suffolk 360 Nassau 298 Queens 235

Filter hate crimes just for 2012 as well

counties12 <- counties |>
  filter(year == 2012) |>
  arrange(desc(sum)) 
counties12
# A tibble: 41 × 3
# Groups:   year [1]
    year county        sum
   <dbl> <chr>       <dbl>
 1  2012 Kings         136
 2  2012 Suffolk        83
 3  2012 New York       71
 4  2012 Nassau         48
 5  2012 Queens         48
 6  2012 Erie           28
 7  2012 Bronx          23
 8  2012 Richmond       18
 9  2012 Multiple       14
10  2012 Westchester    13
# ℹ 31 more rows

Join the Hate Crimes data with NY population data for 2012

datajoin <- counties12 |>
  full_join(nypoplong12, by=c("county", "year"))
datajoin
# A tibble: 41 × 4
# Groups:   year [1]
    year county        sum population
   <dbl> <chr>       <dbl>      <dbl>
 1  2012 Kings         136    2572282
 2  2012 Suffolk        83    1499382
 3  2012 New York       71    1625121
 4  2012 Nassau         48    1350748
 5  2012 Queens         48    2278024
 6  2012 Erie           28     920792
 7  2012 Bronx          23    1414774
 8  2012 Richmond       18     470978
 9  2012 Multiple       14         NA
10  2012 Westchester    13     961073
# ℹ 31 more rows

Calculate the rate of incidents per 100,000. Then arrange in descending order

datajoinrate <- datajoin |>
  mutate(rate = sum/population*100000) |>
  arrange(desc(rate))
datajoinrate
# A tibble: 41 × 5
# Groups:   year [1]
    year county        sum population  rate
   <dbl> <chr>       <dbl>      <dbl> <dbl>
 1  2012 Suffolk        83    1499382 5.54 
 2  2012 Kings         136    2572282 5.29 
 3  2012 New York       71    1625121 4.37 
 4  2012 Richmond       18     470978 3.82 
 5  2012 Nassau         48    1350748 3.55 
 6  2012 Erie           28     920792 3.04 
 7  2012 Queens         48    2278024 2.11 
 8  2012 Bronx          23    1414774 1.63 
 9  2012 Westchester    13     961073 1.35 
10  2012 Monroe          5     748947 0.668
# ℹ 31 more rows

Notice that the highest rates of hate crimes in 2012 happened in:

dt <- datajoinrate[,c("county","rate")]
dt
# A tibble: 41 × 2
   county       rate
   <chr>       <dbl>
 1 Suffolk     5.54 
 2 Kings       5.29 
 3 New York    4.37 
 4 Richmond    3.82 
 5 Nassau      3.55 
 6 Erie        3.04 
 7 Queens      2.11 
 8 Bronx       1.63 
 9 Westchester 1.35 
10 Monroe      0.668
# ℹ 31 more rows

But the highest populated counties were: Kings (Brooklyn), Queens, New York, Suffolk (Long Island), Bronx, and Nassau. They do not correspond directly, though they are similar, to the counties with highest rates of hate crimes.

Follow Up

Aggregating some of the categories

aggregategroups <- hatecrimes |>
  pivot_longer(
    cols = 4:44,
    names_to = "victim_cat",
    values_to = "crimecount"
  )
unique(aggregategroups$victim_cat)
 [1] "anti-male"                               
 [2] "anti-female"                             
 [3] "anti-transgender"                        
 [4] "anti-genderidentityexpression"           
 [5] "anti-age*"                               
 [6] "anti-white"                              
 [7] "anti-black"                              
 [8] "anti-americanindian/alaskannative"       
 [9] "anti-asian"                              
[10] "anti-nativehawaiian/pacificislander"     
[11] "anti-multi-racialgroups"                 
[12] "anti-otherrace"                          
[13] "anti-jewish"                             
[14] "anti-catholic"                           
[15] "anti-protestant"                         
[16] "anti-islamic(muslim)"                    
[17] "anti-multi-religiousgroups"              
[18] "anti-atheism/agnosticism"                
[19] "anti-religiouspracticegenerally"         
[20] "anti-otherreligion"                      
[21] "anti-buddhist"                           
[22] "anti-easternorthodox(greek,russian,etc.)"
[23] "anti-hindu"                              
[24] "anti-jehovahswitness"                    
[25] "anti-mormon"                             
[26] "anti-otherchristian"                     
[27] "anti-sikh"                               
[28] "anti-hispanic"                           
[29] "anti-arab"                               
[30] "anti-otherethnicity/nationalorigin"      
[31] "anti-non-hispanic*"                      
[32] "anti-gaymale"                            
[33] "anti-gayfemale"                          
[34] "anti-gay(maleandfemale)"                 
[35] "anti-heterosexual"                       
[36] "anti-bisexual"                           
[37] "anti-physicaldisability"                 
[38] "anti-mentaldisability"                   
[39] "totalincidents"                          
[40] "totalvictims"                            
[41] "totaloffenders"                          
aggregategroups <- aggregategroups |>
  mutate(group = case_when(
    victim_cat %in% c("anti-transgender", "anti-gayfemale", "anti-gendervictim_catendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual") ~ "anti-lgbtq",
    victim_cat %in% c("anti-multi-racialgroups", "anti-jewish", "anti-protestant", "anti-multi-religousgroups", "anti-religiouspracticegenerally", "anti-buddhist", "anti-hindu", "anti-mormon", "anti-sikh", "anti-catholic", "anti-islamic(muslim)", "anti-atheism/agnosticism", "anti-otherreligion", "anti-easternorthodox(greek,russian,etc.)", "anti-jehovahswitness", "anti-otherchristian") ~ "anti-religion", 
    victim_cat %in% c("anti-asian", "anti-arab", "anti-non-hispanic", "anti-white", "anti-americanindian/alaskannative", "anti-nativehawaiian/pacificislander", "anti-otherrace", "anti-hispanic", "anti-otherethnicity/nationalorigin") ~ "anti-ethnicity",
    victim_cat %in% c("anti-physicaldisability", "anti-mentaldisability") ~ "anti-disability",
    victim_cat %in% c("anti-female", "anti-male") ~ "anti-gender",
    TRUE ~ "others"))
aggregategroups
# A tibble: 17,343 × 6
   county  year crimetype              victim_cat               crimecount group
   <chr>  <dbl> <chr>                  <chr>                         <dbl> <chr>
 1 Albany  2016 Crimes Against Persons anti-male                         0 anti…
 2 Albany  2016 Crimes Against Persons anti-female                       0 anti…
 3 Albany  2016 Crimes Against Persons anti-transgender                  0 anti…
 4 Albany  2016 Crimes Against Persons anti-genderidentityexpr…          0 othe…
 5 Albany  2016 Crimes Against Persons anti-age*                         0 othe…
 6 Albany  2016 Crimes Against Persons anti-white                        0 anti…
 7 Albany  2016 Crimes Against Persons anti-black                        1 othe…
 8 Albany  2016 Crimes Against Persons anti-americanindian/ala…          0 anti…
 9 Albany  2016 Crimes Against Persons anti-asian                        0 anti…
10 Albany  2016 Crimes Against Persons anti-nativehawaiian/pac…          0 anti…
# ℹ 17,333 more rows

or create subset with just lgbtq

lgbtq <- hatecrimes |>
  pivot_longer(
      cols = 4:44,
      names_to = "victim_cat",
      values_to = "crimecount") |>
filter(victim_cat %in% c("anti-transgender", "anti-gayfemale", "anti-gendervictim_catendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual"))
lgbtq
# A tibble: 1,692 × 5
   county    year crimetype              victim_cat       crimecount
   <chr>    <dbl> <chr>                  <chr>                 <dbl>
 1 Albany    2016 Crimes Against Persons anti-transgender          0
 2 Albany    2016 Crimes Against Persons anti-gaymale              1
 3 Albany    2016 Crimes Against Persons anti-gayfemale            0
 4 Albany    2016 Crimes Against Persons anti-bisexual             0
 5 Albany    2016 Property Crimes        anti-transgender          0
 6 Albany    2016 Property Crimes        anti-gaymale              0
 7 Albany    2016 Property Crimes        anti-gayfemale            0
 8 Albany    2016 Property Crimes        anti-bisexual             0
 9 Allegany  2016 Property Crimes        anti-transgender          0
10 Allegany  2016 Property Crimes        anti-gaymale              0
# ℹ 1,682 more rows

So what does all of this mean?

Important Findings:

The categories used in the hate crimes data set were thorough and extensive, which theoretically should paint a richer picture. The downside is that the counties documented may not share the same level of thoroughness, which may contribute to an inaccurate picture. In fact, it is surprising that the categories aren’t already aggregated.

Reading Ken Schwencke’s article in ProPublica titled Documenting Hate: Why America Fails at Gathering Hate Crime Statistics alongside completing this tutorial was eye opening.

It might make for a more multifaceted story if other data is joined with the hate crimes dataset and the population data from the US census. Perhaps the census could be mined for more socioeconomic variables, such as the median household income of each county.

I would like to look into whether anything has changed about the way the FBI collects this data or states report this data in past six years or so. In particular I am curious if any changes correspond to changes in political administrations at the local, state, and national level.

I wonder if there is a way for victims to be allowed to appeal the classification of the crimes committed against them to be re-categorized as hate crimes. Even if the appeals are denied, it would allow for data to be collected on people who self-identify as victims of a hate crime. If that is too much to ask of local and state governments, there could be a mechanism for victims and whistle-blowers to report hate crimes directly to the FBI. This would at least catch data that is not collected when counties or states do not protect certain classes that the federal government recognizes (ant-LGBTQ crimes are the prime example of this). If there is a movement aiming to reform the way this data is collected, it is worth supporting.

I also wonder if software can be used to scan police report for keywords related to hate crimes. Schwencke notes there have been cases of swastikas being charged as mere vandalism. By searching for incidents of offensive imagery, reports of slurs used, and victims’ physical descriptions one might be able to locate more data points. It is worth looking into whether such software exists or has been proposed.

Thank you!!! Questions?