\[\begin{matrix} \end{matrix} \textbf{Problem set 1}\\ \text{1. What is the rank of the matrix A?}\\ A =\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix}\\ \begin{array}{c} R_2 - (-1) \times R_1 \rightarrow R_2 \end{array} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix} \begin{array}{c} R_4 - 5 \times R_1 \rightarrow R_4 \end{array} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 1 & -2 & 1 \\ 0 & -6 & -17 & -23 \end{bmatrix}\\ \begin{array}{c} R_3 - \frac{1}{2} \times R_2 \rightarrow R_3 \end{array} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & -4 & \frac{-5}{2} \\ 0 & -6 & -17 & -23 \end{bmatrix} \begin{array}{c} R_4 - (-3) \times R_2 \rightarrow R_4 \end{array} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & -4 & \frac{-5}{2} \\ 0 & 0 & -5 & -2 \end{bmatrix}\\ \begin{array}{c} R_4 - \frac{5}{4} \times R_1 \rightarrow R_4 \end{array} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 0 & -4 & \frac{-5}{2} \\ 0 & 0 & 0 & \frac{9}{8} \end{bmatrix} \text{The rank of Matrix $A$ = 4}\\ \text{2.) Given an mxn matrix where m > n, what can be the maximum rank?} \\ \text{The mini- mum rank, assuming that the matrix is non-zero?} \\ \text{The maximum rank of an \( m \times n \) matrix where \( m > n \) is \( n \). }\\ \text{The minimum rank of a non-zero matrix is 1}\\ \\[1em] \textbf{3. What is the rank of the matrix B?}\\ \begin{align*} \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix} \begin{array}{c} R_2 - 3 \times R_1 \rightarrow R_2 \end{array} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 2 & 4 & 2 \end{bmatrix} \begin{array}{c} R_3 - 2 \times R_1 \rightarrow R_3 \end{array} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{align*} \\[1em] \textbf{Problem set 2}\\ \begin{bmatrix} 1-\lambda & 2 & 2 \\ 0 & 4-\lambda & 5 \\ 0 & 0 & 6-\lambda \end{bmatrix}\\ det(A-λI) =\begin{bmatrix} -\lambda+1 & 2 & 2 \\ 0 & -\lambda+4 & 5 \\ 0 & 0 & -\lambda+6 \end{bmatrix} = (-λ+1)(-λ+4)(-λ+6) =-λ^3+11λ^2-34λ+24\\ \begin{array}{c} \lambda_1 = 1, \lambda_2 = 4, \lambda_3 = 6 \end{array}\\ v_1= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \lambda_1 = 1\\ v_2 = \begin{bmatrix} \frac{2}{3} \\ 1 \\ 0 \end{bmatrix} , \lambda_2 = 4\\ v_3 =\begin{bmatrix} \frac{7}{5} \\ \frac{5}{2} \\ 1 \end{bmatrix}, \lambda_1 = 6\]