Problem 1: Find the Rank of matrix A

\(A= \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \\ \end{bmatrix}\)

To find the rank will have to reduce the matrix to row-echelon form and the number of pivots will be equal to the rank of the matrix

\[ R_2 = R_1+R_2 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 7 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \\ \end{bmatrix} -> R_2= 3*R_3 - R_2 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -10 & -4 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \\ \end{bmatrix} \]

\[ R_3 = R_2-R_3 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -10 & -4 \\ 0 & 0 & -8 & -5 \\ 5 & 4 & -2 & -3 \\ \end{bmatrix} -> R_4=5R_1 - R_4 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -10 & -4 \\ 0 & 0 & -8 & -5 \\ 0 & 6 & 17 & 23 \\ \end{bmatrix} \]

\[ R_4=6*R_2-R_4 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 6 & 6 \\ 0 & 0 & -8 & -5 \\ 0 & 0 & -77 & -47 \\ \end{bmatrix} -> R_3=-(1/8)*R_3 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 6 & 6 \\ 0 & 0 & 1 & 5/8 \\ 0 & 0 & -77 & -47 \\ \end{bmatrix} \]

\[ R_4=77*R_3+R_4 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 6 & 6 \\ 0 & 0 & 1 & 5/8 \\ 0 & 0 & 0 & 9/8 \\ \end{bmatrix} -> R_4 = (8/9)*R_4 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 6 & 6 \\ 0 & 0 & 1 & 5/8 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \]

After reducing to row-echelon form we can count 4 pivots and therefore the rank of this matrix is 4

Problem 2:

Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero? \subsection The maximum rank that this matrix can have will be equal to n. This is because the max rank of a matrix is equal to the smaller of the two dimensions of the matrix and in this case that is equal to n.

The minimum rank, assuming the matrix is non-zero, would be 1. This is because if the matrix is non-zero, there must be at least one non-zero element in the matrix. This means that there must be at least one linearly independent row or column and therefore the rank must be at least 1.

Problem 3:

Find the Rank of matrix B

\(B= \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \\ \end{bmatrix}\)

To find the rank will have to reduce the matrix to row-echelon form and the number of pivots will be equal to the rank of the matrix.

\[ R_2=3*R_1-R_2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 2 & 4 & 2 \\ \end{bmatrix} -> R_2 <->R_3 \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 0 & 0 & 0 \\ \end{bmatrix} \]

\[ R_2 = 2*R_1+R_2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \]

The rank of B is 1 because when we reduce to row-echelon form we only get one pivot. This means there’s just 1 linearly independent row and the other 2 are linear combinations of the first row.

Problem set 2 Problem 1

Find the eigenvalues and eigenvectors for the matrix A

\(A= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}\)

To find the eigenvalues and eigenvectors will need to calculate \(det(\lambda I_3 - A = 0)\)

\[ det( \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} ) = 0 \]

\[ det( \begin{bmatrix} \lambda-1 & -2 & -3 \\ 0 & \lambda -4 & -5 \\ 0 & 0 & \lambda -6 \end{bmatrix} ) = 0 \]

\(( \lambda -1) ( \lambda - 4) ( \lambda - 6 ) + ( -2 * 5 * 0 ) + ( -3 * 0 *0 )+ ( -2 * 0 * ( \lambda-6 ) )+ ( (\lambda -1) * -5 * 0 ) + (-3 * (\lambda-4)*0) =0\)

\(( \lambda -1) ( \lambda - 4) ( \lambda - 6 )=0\)

\(( \lambda -1) = 0, \lambda=1\)

\(( \lambda -4) = 0, \lambda=4\)

\(( \lambda -6) = 0, \lambda=6\)

There are 3 eigenvalues for the matrix a and they are \(\lambda=1,4,6\)

Now to compute the eigenvectors we need to solve \((A- \lambda I)x=0\) for each eigenvalue

For = 1

\[ A- \lambda_1 I = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} - \begin{bmatrix} 1-1 & 0 & 0 \\ 0 & 1-4 & 0 \\ 0 & 0 & 1-6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 7 & 5 \\ 0 & 0 & 11 \end{bmatrix} \]

Convert to row echelon form

\[ \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5/7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

This gives the system of equations:

\(x_1+2x_2+3x_3=0\)

\(x_2+5/7x_3=0\)

\(x_3=0\)

Let x_3 = a, then:

\(x_2+ 5/7(a) = 0\)

\(x_2=-5/7a\)

\(x_1+ 2(-5\7)(a)+3(a)=0\)

\(x_1=-11\7a\)

\(\lambda =1, \lambda_1=a\begin{bmatrix}-11/7\\-5/7\\1\end{bmatrix}\)

For = 4

\[ A- \lambda_1 I = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} - \begin{bmatrix} 4-1 & 0 & 0 \\ 0 & 4-4 & 0 \\ 0 & 0 & 4-6 \end{bmatrix} = \begin{bmatrix} -2 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 8 \end{bmatrix} \]

Reduce to row echelon form

\[ \begin{bmatrix} 1 & -1 & -3/2 \\ 0 & 1 & 5/4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

This gives the system of equations:

\(x_1-x_2-3/2x_3=0\)

\(x_2+5/4x_3=0\)

\(\x_3=2=0\)

Let \(x_3=a\)

\(x_2+5/4a =0\)

\(x_2=-5/4a\)

\(x_1+5/4a-3/2a=0=\)

\(x_1=1/4a\)

\(\lambda =4, \lambda_2=a\begin{bmatrix}1/4\\-5/4\\1\end{bmatrix}\)

For = 6

\[ A- \lambda_1 I = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} - \begin{bmatrix} 6-1 & 0 & 0 \\ 0 & 6-4 & 0 \\ 0 & 0 & 6-6 \end{bmatrix} = \begin{bmatrix} -4 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{bmatrix} \]

Reduce to row echelon form

\[ \begin{bmatrix} -4 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

This gives the system of equations:

\(-4x_1+2x_2+3x_3=0\)

\(2x_2+5x_3=0\)

Let \(x_3=a\)

\(2x_2+5(a)=0\)

\(x_2=5/2a\)

\(-4x_1+2(5/2a)+3(a)=0\)

\(-4x_1+8a=0\)

\(x_1=-2a\)

\(\lambda =6, \lambda_3=a\begin{bmatrix}-2\\5/2\\1\end{bmatrix}\)

A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow=4,byrow=TRUE)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
# Compute the QR decomposition
qr_decomp <- qr(A)

# Extract the upper triangular matrix R
R <- qr.R(qr_decomp)

# Calculate the rank by counting non-zero diagonal elements
rank_A <- sum(diag(R) != 0)

# Print the rank of the matrix
print(rank_A)
## [1] 4
B <- matrix(c(1,3,2,2,6,4,1,3,2), nrow = 3)
B
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2
# Compute the QR decomposition
qr_decomp <- qr(B)

# Extract the upper triangular matrix R
R <- qr.R(qr_decomp)

# Calculate the rank by counting non-zero diagonal elements
rank_B <- sum(diag(R) != 0)

# Print the rank of the matrix
print(rank_B)
## [1] 1
A<- matrix(c(1,0,0,2,4,0,3,5,6), nrow=3)
A
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    0    4    5
## [3,]    0    0    6
eigen(A)
## eigen() decomposition
## $values
## [1] 6 4 1
## 
## $vectors
##           [,1]      [,2] [,3]
## [1,] 0.5108407 0.5547002    1
## [2,] 0.7981886 0.8320503    0
## [3,] 0.3192754 0.0000000    0