Import Data

library(readr)
d <- read_csv("data.csv")
## New names:
## Rows: 211 Columns: 30
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): recruitment, year, occupation, duration, Q19, Q22, Q23 dbl (23): ...1, ID,
## age, gender, sexuality, born, ethnicity, income, fam_inc...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
d <- d[-c(211),]
#full dataset 
write.csv(d, file = "FGP_fulldataset_data.csv", row.names = FALSE)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
d <- data.frame(d$fgp, d$sap_dis, d$fof, d$wswb, d$anxiety, d$depression, d$wellbeing)

d <- rename(d, fgp = d.fgp, sap_dis = d.sap_dis, fof = d.fof, swfw = d.wswb, anxiety = d.anxiety, depression = d.depression, wellbeing = d.wellbeing)

d <- na.omit(d)

d[163, 1] = "2"
#changing FGP variable to a character
d <- d %>% 
  mutate_at(c(1), as.character) #here i am changing the fgp variable from a numeric to character
str(d)
## 'data.frame':    203 obs. of  7 variables:
##  $ fgp       : chr  "1" "1" "1" "1" ...
##  $ sap_dis   : num  27 19 15 17 24 18 15 19 20 26 ...
##  $ fof       : num  4.4 3.2 3.2 2.2 2.4 2.8 1.6 2.8 2.4 2.8 ...
##  $ swfw      : num  4.25 6.14 5.36 4.21 5.96 5.29 4.96 5.83 4.56 6.11 ...
##  $ anxiety   : num  1 1.14 1.71 1.43 1.86 1.71 1.29 2.14 1.43 2.57 ...
##  $ depression: num  1.67 1.56 1.33 1.67 1.56 1.33 1.67 2.56 1.44 2.11 ...
##  $ wellbeing : num  2.4 3 3.2 3.2 2.6 3.6 2.6 1 3.6 3 ...
##  - attr(*, "na.action")= 'omit' Named int [1:7] 47 85 89 152 159 175 199
##   ..- attr(*, "names")= chr [1:7] "47" "85" "89" "152" ...
#change firstgen variable to be categorical
d$fgp <- factor(d$fgp, #good idea to label IV as categorical factor
                    levels = c("1", "2"), 
                    labels = c("firstgen", "contgen"))

Correlation

table <- apaTables::apa.cor.table(d, table.number = 1, show.sig.stars = TRUE,
    landscape = TRUE, filename = "table.doc")
psych::pairs.panels(d)

print(table)
## 
## 
## Table 1 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable      M     SD   1           2            3            4           
##   1. sap_dis    20.39 4.42                                                   
##                                                                              
##   2. fof        3.00  0.95 .48**                                             
##                            [.36, .58]                                        
##                                                                              
##   3. swfw       5.14  0.90 -.10        -.32**                                
##                            [-.23, .04] [-.44, -.19]                          
##                                                                              
##   4. anxiety    1.85  0.77 .42**       .45**        -.26**                   
##                            [.30, .52]  [.34, .56]   [-.38, -.12]             
##                                                                              
##   5. depression 1.75  0.67 .36**       .42**        -.38**       .80**       
##                            [.23, .47]  [.30, .53]   [-.49, -.25] [.74, .84]  
##                                                                              
##   6. wellbeing  3.02  0.92 -.08        -.24**       .27**        -.27**      
##                            [-.22, .06] [-.37, -.11] [.14, .39]   [-.40, -.14]
##                                                                              
##   5           
##               
##               
##               
##               
##               
##               
##               
##               
##               
##               
##               
##               
##               
##               
##   -.34**      
##   [-.46, -.21]
##               
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Power Analysis

# Load the pwr package
library(pwr)

# Set parameters
effect_size <- 0.5 # Cohen's d effect size
alpha <- 0.05      # Significance level
power <- 0.80      # Desired power
sample_size <- NULL # We want to find the sample size

# Perform power analysis
pwr.t.test(d = effect_size, sig.level = alpha, power = power)
## 
##      Two-sample t test power calculation 
## 
##               n = 63.76561
##               d = 0.5
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
# The output will give you the sample size needed for the specified effect size, significance level, and power.

Independent Samples t-test Maladaptive Perfectionism X FGP Status

#Levene's test to check for unequal variances in DV between groups (assumption)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
leveneTest(d$sap_dis, d$fgp) #(note: put DV before IV in the code)
#to get Descriptives for each group
library(pastecs)
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
by(d$sap_dis, d$fgp, stat.desc, basic = FALSE, norm = TRUE)
## d$fgp: firstgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
## 21.000000000 20.983050847  0.381178029  0.754903113 17.145009416  4.140653260 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##  0.197333233 -0.016712561 -0.037523091 -0.931138936 -1.053598542  0.968665246 
##   normtest.p 
##  0.007370079 
## ------------------------------------------------------------ 
## d$fgp: contgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
## 19.000000000 19.564705882  0.507767966  1.009752287 21.915406162  4.681389341 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##  0.239277266  0.043804866  0.083868183 -0.273525993 -0.264656644  0.957857986 
##   normtest.p 
##  0.007245632
#"by" command gives descriptives (stat.desc) broken down *BY* IV groups)
#"stat.desc" function gives descriptives. "norm = TRUE" gives normality info

#Independent samples t-test (Note: DV ~ IV)
options(scipen=999) #turning off scientific notation (optional)
model1 <- t.test(sap_dis ~ fgp, data = d, paired = FALSE, var.equal = TRUE) 
#"var.equal" assumes equal variances (FALSE if unequal variances)
model1 #prints the model output
## 
##  Two Sample t-test
## 
## data:  sap_dis by fgp
## t = 2.2789, df = 201, p-value = 0.02372
## alternative hypothesis: true difference in means between group firstgen and group contgen is not equal to 0
## 95 percent confidence interval:
##  0.1911216 2.6455684
## sample estimates:
## mean in group firstgen  mean in group contgen 
##               20.98305               19.56471
# note: if var.equal = FALSE, get "Welch's t-test" that corrects df for unequal variances

#Cohen's d effect size
library(effsize)
#in cohen.d, put DV first then IV, then specify paired or not
cohen.d(d$sap_dis, d$fgp, paired=FALSE)
## 
## Cohen's d
## 
## d estimate: 0.3242102 (small)
## 95 percent confidence interval:
##      lower      upper 
## 0.04189873 0.60652170
#Note: if you see a warning about functions being "masked" or "unused arguments"
#...you may need to turn off other competing packages or just do this:
#package::functionName (which tells R to use the function only for that package)
#effsize::cohen.d(df6$sap_mal_perf, df6$first_gen, paired=FALSE)

#creating BOX PLOT
library(ggplot2) 
library(Hmisc)
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
boxplot <- ggplot(d, aes(fgp, sap_dis)) #basic layer created by aes (aesthetic mappings) 
  boxplot + #shows the basic layer
  geom_boxplot() + #adds geom (geometric object) which is a boxplot
  labs(x="First- vs. Continuing-Generation", y="Personal Maladaptive Perfectionism") +  #adds labels
  theme_classic() #removes gray background for APA style

Independent Samples t-test Fear of Failure X FGP

#Levene's test to check for unequal variances in DV between groups (assumption)
library(car)
leveneTest(d$fof, d$fgp) #(note: put DV before IV in the code)
#to get Descriptives for each group
library(pastecs)
by(d$fof, d$fgp, stat.desc, basic = FALSE, norm = TRUE)
## d$fgp: firstgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   3.00000000   3.03220339   0.08682499   0.17195235   0.88955237   0.94316084 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##   0.31104801   0.15592885   0.35009192  -0.38161508  -0.43180355   0.97472499 
##   normtest.p 
##   0.02513579 
## ------------------------------------------------------------ 
## d$fgp: contgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##    3.0000000    2.9458824    0.1046476    0.2081033    0.9308459    0.9648036 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##    0.3275092   -0.1333556   -0.2553208   -0.4801461   -0.4645769    0.9789823 
##   normtest.p 
##    0.1799983
#"by" command gives descriptives (stat.desc) broken down *BY* IV groups)
#"stat.desc" function gives descriptives. "norm = TRUE" gives normality info

#Independent samples t-test (Note: DV ~ IV)
options(scipen=999) #turning off scientific notation (optional)
model2 <- t.test(fof ~ fgp, data = d, paired = FALSE, var.equal = TRUE) 
#"var.equal" assumes equal variances (FALSE if unequal variances)
model2 #prints the model output
## 
##  Two Sample t-test
## 
## data:  fof by fgp
## t = 0.63718, df = 201, p-value = 0.5247
## alternative hypothesis: true difference in means between group firstgen and group contgen is not equal to 0
## 95 percent confidence interval:
##  -0.1808113  0.3534534
## sample estimates:
## mean in group firstgen  mean in group contgen 
##               3.032203               2.945882
# note: if var.equal = FALSE, get "Welch's t-test" that corrects df for unequal variances

#Cohen's d effect size
library(effsize)
#in cohen.d, put DV first then IV, then specify paired or not
cohen.d(d$fof, d$fgp, paired=FALSE)
## 
## Cohen's d
## 
## d estimate: 0.09064809 (negligible)
## 95 percent confidence interval:
##      lower      upper 
## -0.1900151  0.3713113
#Note: if you see a warning about functions being "masked" or "unused arguments"
#...you may need to turn off other competing packages or just do this:
#package::functionName (which tells R to use the function only for that package)
#effsize::cohen.d(df6$sap_mal_perf, df6$first_gen, paired=FALSE)

#creating BOX PLOT
library(ggplot2) 
library(Hmisc)
boxplot <- ggplot(d, aes(fgp, sap_dis)) #basic layer created by aes (aesthetic mappings) 
  boxplot + #shows the basic layer
  geom_boxplot() + #adds geom (geometric object) which is a boxplot
  labs(x="First- vs. Continuing-Generation", y="Fear of Failure") +  #adds labels
  theme_classic() #removes gray background for APA style

# Independent Samples t-test Social Wellbeing from Work X FGP

#Levene's test to check for unequal variances in DV between groups (assumption)
library(car)
leveneTest(d$swfw, d$fgp) #(note: put DV before IV in the code)
#to get Descriptives for each group
library(pastecs)
by(d$swfw, d$fgp, stat.desc, basic = FALSE, norm = TRUE)
## d$fgp: firstgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   5.21000000   5.12881356   0.07719694   0.15288450   0.70320542   0.83857344 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##   0.16350242  -0.43003186  -0.96550880  -0.55266093  -0.62534465   0.97277268 
##   normtest.p 
##   0.01682705 
## ------------------------------------------------------------ 
## d$fgp: contgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   5.25000000   5.16611765   0.10553732   0.20987253   0.94674070   0.97300601 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##   0.18834376  -0.54741079  -1.04806504   0.10644730   0.10299564   0.97415927 
##   normtest.p 
##   0.08541232
#"by" command gives descriptives (stat.desc) broken down *BY* IV groups)
#"stat.desc" function gives descriptives. "norm = TRUE" gives normality info

#Independent samples t-test (Note: DV ~ IV)
options(scipen=999) #turning off scientific notation (optional)
model3 <- t.test(swfw ~ fgp, data = d, paired = FALSE, var.equal = TRUE) 
#"var.equal" assumes equal variances (FALSE if unequal variances)
model3 #prints the model output
## 
##  Two Sample t-test
## 
## data:  swfw by fgp
## t = -0.29226, df = 201, p-value = 0.7704
## alternative hypothesis: true difference in means between group firstgen and group contgen is not equal to 0
## 95 percent confidence interval:
##  -0.2889914  0.2143832
## sample estimates:
## mean in group firstgen  mean in group contgen 
##               5.128814               5.166118
# note: if var.equal = FALSE, get "Welch's t-test" that corrects df for unequal variances

#Cohen's d effect size
library(effsize)
#in cohen.d, put DV first then IV, then specify paired or not
cohen.d(d$swfw, d$fgp, paired=FALSE)
## 
## Cohen's d
## 
## d estimate: -0.04157799 (negligible)
## 95 percent confidence interval:
##      lower      upper 
## -0.3221305  0.2389745
#Note: if you see a warning about functions being "masked" or "unused arguments"
#...you may need to turn off other competing packages or just do this:
#package::functionName (which tells R to use the function only for that package)
#effsize::cohen.d(df6$sap_mal_perf, df6$first_gen, paired=FALSE)

#creating BOX PLOT
library(ggplot2) 
library(Hmisc)
boxplot <- ggplot(d, aes(fgp, swfw)) #basic layer created by aes (aesthetic mappings) 
  boxplot + #shows the basic layer
  geom_boxplot() + #adds geom (geometric object) which is a boxplot
  labs(x="First- vs. Continuing-Generation", y="Social Wellbeing From Work") +  #adds labels
  theme_classic() #removes gray background for APA style

Independent Samples t-test Anxiety X FGP

#Levene's test to check for unequal variances in DV between groups (assumption)
library(car)
leveneTest(d$anxiety, d$fgp) #(note: put DV before IV in the code)
#to get Descriptives for each group
library(pastecs)
by(d$anxiety, d$fgp, stat.desc, basic = FALSE, norm = TRUE)
## d$fgp: firstgen
##          median            mean         SE.mean    CI.mean.0.95             var 
##  1.710000000000  1.888135593220  0.068940256259  0.136532564962  0.560825554107 
##         std.dev        coef.var        skewness        skew.2SE        kurtosis 
##  0.748882870753  0.396625577867  0.813464290473  1.826392428529 -0.080815092468 
##        kurt.2SE      normtest.W      normtest.p 
## -0.091443564769  0.916560114958  0.000001819748 
## ------------------------------------------------------------ 
## d$fgp: contgen
##        median          mean       SE.mean  CI.mean.0.95           var 
## 1.57000000000 1.79988235294 0.08681679963 0.17264472700 0.64065831933 
##       std.dev      coef.var      skewness      skew.2SE      kurtosis 
## 0.80041134383 0.44470203429 1.11768869805 2.13991114467 0.62774397790 
##      kurt.2SE    normtest.W    normtest.p 
## 0.60738876280 0.86558170854 0.00000029424
#"by" command gives descriptives (stat.desc) broken down *BY* IV groups)
#"stat.desc" function gives descriptives. "norm = TRUE" gives normality info

#Independent samples t-test (Note: DV ~ IV)
options(scipen=999) #turning off scientific notation (optional)
model4 <- t.test(anxiety ~ fgp, data = d, paired = FALSE, var.equal = TRUE) 
#"var.equal" assumes equal variances (FALSE if unequal variances)
model4 #prints the model output
## 
##  Two Sample t-test
## 
## data:  anxiety by fgp
## t = 0.80477, df = 201, p-value = 0.4219
## alternative hypothesis: true difference in means between group firstgen and group contgen is not equal to 0
## 95 percent confidence interval:
##  -0.1279840  0.3044905
## sample estimates:
## mean in group firstgen  mean in group contgen 
##               1.888136               1.799882
# note: if var.equal = FALSE, get "Welch's t-test" that corrects df for unequal variances

#Cohen's d effect size
library(effsize)
#in cohen.d, put DV first then IV, then specify paired or not
cohen.d(d$anxiety, d$fgp, paired=FALSE)
## 
## Cohen's d
## 
## d estimate: 0.1144903 (negligible)
## 95 percent confidence interval:
##      lower      upper 
## -0.1662564  0.3952369
#Note: if you see a warning about functions being "masked" or "unused arguments"
#...you may need to turn off other competing packages or just do this:
#package::functionName (which tells R to use the function only for that package)
#effsize::cohen.d(df6$sap_mal_perf, df6$first_gen, paired=FALSE)

#creating BOX PLOT
library(ggplot2) 
library(Hmisc)
boxplot <- ggplot(d, aes(fgp, anxiety)) #basic layer created by aes (aesthetic mappings) 
  boxplot + #shows the basic layer
  geom_boxplot() + #adds geom (geometric object) which is a boxplot
  labs(x="First- vs. Continuing-Generation", y="Anxiety") +  #adds labels
  theme_classic() #removes gray background for APA style

Independent Samples t-test Depression X FGP

#Levene's test to check for unequal variances in DV between groups (assumption)
library(car)
leveneTest(d$depression, d$fgp) #(note: put DV before IV in the code)
#to get Descriptives for each group
library(pastecs)
by(d$depression, d$fgp, stat.desc, basic = FALSE, norm = TRUE)
## d$fgp: firstgen
##          median            mean         SE.mean    CI.mean.0.95             var 
##  1.670000000000  1.814745762712  0.061740381592  0.122273590466  0.449801216862 
##         std.dev        coef.var        skewness        skew.2SE        kurtosis 
##  0.670672212681  0.369568138117  0.827486641206  1.857875451828 -0.150279545379 
##        kurt.2SE      normtest.W      normtest.p 
## -0.170043700026  0.910315663599  0.000000823506 
## ------------------------------------------------------------ 
## d$fgp: contgen
##         median           mean        SE.mean   CI.mean.0.95            var 
## 1.440000000000 1.665294117647 0.071632932241 0.142449941527 0.436158543417 
##        std.dev       coef.var       skewness       skew.2SE       kurtosis 
## 0.660423003398 0.396580397660 1.324762284257 2.536371335835 1.531201893080 
##       kurt.2SE     normtest.W     normtest.p 
## 1.481551167648 0.862531832190 0.000000227609
#"by" command gives descriptives (stat.desc) broken down *BY* IV groups)
#"stat.desc" function gives descriptives. "norm = TRUE" gives normality info

#Independent samples t-test (Note: DV ~ IV)
options(scipen=999) #turning off scientific notation (optional)
model5 <- t.test(depression ~ fgp, data = d, paired = FALSE, var.equal = TRUE) 
#"var.equal" assumes equal variances (FALSE if unequal variances)
model5 #prints the model output
## 
##  Two Sample t-test
## 
## data:  depression by fgp
## t = 1.5764, df = 201, p-value = 0.1165
## alternative hypothesis: true difference in means between group firstgen and group contgen is not equal to 0
## 95 percent confidence interval:
##  -0.03749116  0.33639445
## sample estimates:
## mean in group firstgen  mean in group contgen 
##               1.814746               1.665294
# note: if var.equal = FALSE, get "Welch's t-test" that corrects df for unequal variances

#Cohen's d effect size
library(effsize)
#in cohen.d, put DV first then IV, then specify paired or not
cohen.d(d$depression, d$fgp, paired=FALSE)
## 
## Cohen's d
## 
## d estimate: 0.2242644 (small)
## 95 percent confidence interval:
##       lower       upper 
## -0.05711574  0.50564461
#Note: if you see a warning about functions being "masked" or "unused arguments"
#...you may need to turn off other competing packages or just do this:
#package::functionName (which tells R to use the function only for that package)
#effsize::cohen.d(df6$sap_mal_perf, df6$first_gen, paired=FALSE)

#creating BOX PLOT
library(ggplot2) 
library(Hmisc)
boxplot <- ggplot(d, aes(fgp, depression)) #basic layer created by aes (aesthetic mappings) 
  boxplot + #shows the basic layer
  geom_boxplot() + #adds geom (geometric object) which is a boxplot
  labs(x="First- vs. Continuing-Generation", y="Depression") +  #adds labels
  theme_classic() #removes gray background for APA style

Independent Samples t-test Wellbeing X FGP

#Levene's test to check for unequal variances in DV between groups (assumption)
library(car)
leveneTest(d$wellbeing, d$fgp) #(note: put DV before IV in the code)
#to get Descriptives for each group
library(pastecs)
by(d$wellbeing, d$fgp, stat.desc, basic = FALSE, norm = TRUE)
## d$fgp: firstgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   3.00000000   2.98898305   0.08141676   0.16124163   0.78218528   0.88441239 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##   0.29589074   0.11745562   0.26371170   0.36265986   0.41035541   0.98354748 
##   normtest.p 
##   0.15947393 
## ------------------------------------------------------------ 
## d$fgp: contgen
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   3.00000000   3.05411765   0.10597755   0.21074798   0.95465546   0.97706472 
##     coef.var     skewness     skew.2SE     kurtosis     kurt.2SE   normtest.W 
##   0.31991718   0.07768561   0.14873578   0.04179150   0.04043637   0.98125393 
##   normtest.p 
##   0.25337761
#"by" command gives descriptives (stat.desc) broken down *BY* IV groups)
#"stat.desc" function gives descriptives. "norm = TRUE" gives normality info

#Independent samples t-test (Note: DV ~ IV)
options(scipen=999) #turning off scientific notation (optional)
model6 <- t.test(wellbeing ~ fgp, data = d, paired = FALSE, var.equal = TRUE) 
#"var.equal" assumes equal variances (FALSE if unequal variances)
model6 #prints the model output
## 
##  Two Sample t-test
## 
## data:  wellbeing by fgp
## t = -0.49536, df = 201, p-value = 0.6209
## alternative hypothesis: true difference in means between group firstgen and group contgen is not equal to 0
## 95 percent confidence interval:
##  -0.3244117  0.1941425
## sample estimates:
## mean in group firstgen  mean in group contgen 
##               2.988983               3.054118
# note: if var.equal = FALSE, get "Welch's t-test" that corrects df for unequal variances

#Cohen's d effect size
library(effsize)
#in cohen.d, put DV first then IV, then specify paired or not
cohen.d(d$wellbeing, d$fgp, paired=FALSE)
## 
## Cohen's d
## 
## d estimate: -0.07047192 (negligible)
## 95 percent confidence interval:
##      lower      upper 
## -0.3510797  0.2101358
#Note: if you see a warning about functions being "masked" or "unused arguments"
#...you may need to turn off other competing packages or just do this:
#package::functionName (which tells R to use the function only for that package)
#effsize::cohen.d(df6$sap_mal_perf, df6$first_gen, paired=FALSE)

#creating BOX PLOT
library(ggplot2) 
library(Hmisc)
boxplot <- ggplot(d, aes(fgp, wellbeing)) #basic layer created by aes (aesthetic mappings) 
  boxplot + #shows the basic layer
  geom_boxplot() + #adds geom (geometric object) which is a boxplot
  labs(x="First- vs. Continuing-Generation", y="Wellbeing") +  #adds labels
  theme_classic() #removes gray background for APA style

# Other Correlations

library(ggplot2)
library(ggpubr)
#fof
ggscatter(d, x = "sap_dis", y = "fof",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Fear of Failure")

          # p < 0.001
#swfw
ggscatter(d, x = "sap_dis", y = "swfw",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Social Wellbeing From Work")

          # p < 0.001
#anxiety
ggscatter(d, x = "sap_dis", y = "anxiety",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Anxiety")

          # p < 0.001

#depression
ggscatter(d, x = "sap_dis", y = "depression",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Depression")

          # p < 0.001

#wellbeing
ggscatter(d, x = "sap_dis", y = "wellbeing",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Wellbeing")

          # p < 0.001
#fof
ggscatter(nonfgp, x = "sap_dis", y = "fof",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Fear of Failure")

          # p < 0.001
#swfw
ggscatter(nonfgp, x = "sap_dis", y = "swfw",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Social Wellbeing From Work")

          # p < 0.001
#anxiety
ggscatter(nonfgp, x = "sap_dis", y = "anxiety",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Anxiety")

          # p < 0.001

#depression
ggscatter(nonfgp, x = "sap_dis", y = "depression",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Depression")

          # p < 0.001

#wellbeing
ggscatter(nonfgp, x = "sap_dis", y = "wellbeing",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Personal Maldaptive Perfectionism", ylab = "Wellbeing")

          # p < 0.001
#sap_dis
ggscatter(fgp, x = "fof", y = "sap_dis",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Fear of Failure", ylab = "Personal Maladaptive Perfectionism")

          # p < 0.001
#swfw
ggscatter(fgp, x = "fof", y = "swfw",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Fear of Failure", ylab = "Social Wellbeing From Work")

          # p < 0.001
#anxiety
ggscatter(fgp, x = "fof", y = "anxiety",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Fear of Failure", ylab = "Anxiety")

          # p < 0.001

#depression
ggscatter(fgp, x = "fof", y = "depression",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Fear of Failure", ylab = "Depression")

          # p < 0.001

#wellbeing
ggscatter(fgp, x = "fof", y = "wellbeing",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Fear of Failure", ylab = "Wellbeing")

          # p < 0.001

#### only these for results
#anxiety
ggscatter(fgp, x = "wellbeing", y = "anxiety",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Wellbeing", ylab = "Anxiety")

          # p < 0.001

#depression
ggscatter(fgp, x = "wellbeing", y = "depression",
          add = "reg.line", conf.int = TRUE,
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Wellbeing", ylab = "Depression")

          # p < 0.001

Check Descriptives and Frequences

# means and sds
library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## The following object is masked from 'package:effsize':
## 
##     cohen.d
## The following object is masked from 'package:car':
## 
##     logit
#total sample 
mean(d$sap_dis)
## [1] 20.38916
mean(d$fof)
## [1] 2.996059
mean(d$swfw)
## [1] 5.144433
mean(d$anxiety)
## [1] 1.851182
mean(d$depression)
## [1] 1.752167
mean(d$wellbeing)
## [1] 3.016256
#fgp sample 
mean(fgp$sap_dis)
## [1] 20.98305
mean(fgp$fof)
## [1] 3.032203
mean(fgp$swfw)
## [1] 5.128814
mean(fgp$anxiety)
## [1] 1.888136
mean(fgp$depression)
## [1] 1.814746
mean(fgp$wellbeing)
## [1] 2.988983
#nonfgp sample 
mean(nonfgp$sap_dis)
## [1] 19.56471
mean(nonfgp$fof)
## [1] 2.945882
mean(nonfgp$swfw)
## [1] 5.166118
mean(nonfgp$anxiety)
## [1] 1.799882
mean(nonfgp$depression)
## [1] 1.665294
mean(nonfgp$wellbeing)
## [1] 3.054118
#SDs
#fgp sample
sd(fgp$sap_dis)
## [1] 4.140653
sd(fgp$fof)
## [1] 0.9431608
sd(fgp$swfw)
## [1] 0.8385734
sd(fgp$anxiety)
## [1] 0.7488829
sd(fgp$depression)
## [1] 0.6706722
sd(fgp$wellbeing)
## [1] 0.8844124
#nonfgp sample 
sd(nonfgp$sap_dis)
## [1] 4.681389
sd(nonfgp$fof)
## [1] 0.9648036
sd(nonfgp$swfw)
## [1] 0.973006
sd(nonfgp$anxiety)
## [1] 0.8004113
sd(nonfgp$depression)
## [1] 0.660423
sd(nonfgp$wellbeing)
## [1] 0.9770647