Teori Risiko

Tugas 1


Kontak : \(\downarrow\)
Email
Instagram https://www.instagram.com/arifin.alicia/
RPubs https://rpubs.com/aliciaarifin/
Nama Alicia Arifin
NIM 20214920001
Prodi Statistika, 2021

Case 1

Question:

Suppose you work for a financial institution, and your team is tasked with pricing European call options on a stock. The stock in question is currently trading at $100 per share, and the risk-free interest rate is 5% per annum. The volatility of the stock is estimated to be 20% per annum. The option has a maturity of 6 months.

Answer:

Used Future Value to solve this question and calculation using R:

PV_stock <- 100
r <- 0.05 # Annual risk-free rate
T <- 0.5  # 6 months or half a year

FV_stock <- PV_stock * (1 + r)^T
FV_stock
## [1] 102.4695
library(stats)

# Define variables for Black-Scholes formula
S0 <- 100  # current stock price
X <- 100   # strike price
r <- 0.05  # risk-free interest rate per annum
T <- 0.5   # time to maturity in years
sigma <- 0.20  # volatility per annum

# Calculate d1 and d2 for the Black-Scholes formula
d1 <- (log(S0 / X) + (r + (sigma^2 / 2)) * T) / (sigma * sqrt(T))
d2 <- d1 - sigma * sqrt(T)

# Calculate the price of the European call option using Black-Scholes formula
C <- S0 * pnorm(d1) - X * exp(-r * T) * pnorm(d2)

# Print the call option price
print(C)
## [1] 6.888729

The conclusion is:

Case 2

Question:

Let’s consider a scenario where an investor is evaluating two investment opportunities: investing in a stock market index fund or depositing the same amount of money in a savings account. The investor has $12,000 to invest and has to decide whether to invest it now or wait for a year. Suppose the expected return from the stock market index fund is 9% per year, while the interest rate on the savings account is 2% per year.

Answer:

PV <- 12000 # nilai uang sekarang
r_stock <- 0.09  #bunga p.a dalam pasar saham
r_saving <- 0.02 #bunga p.a dalam bank deposito
n <- 1  # dalam tahunan

#menghitung FV untuk pasar saham
FV_stock_market <- PV * (1 + r_stock)^n

# menghitung future value untuk bunga deposito
FV_savings_account <- PV * (1 + r_saving)^n

# Print the results
cat("FV jika diinvestasikan dalam saham :", FV_stock_market, "\n")
## FV jika diinvestasikan dalam saham : 13080
cat("FV jika diinvestasikan dalam bunga deposito :", FV_savings_account, "\n")
## FV jika diinvestasikan dalam bunga deposito : 12240

The conclusions are:
Ketika investor ingin menginvestasikan$12.000 ke dalam saham atau deposito kita bisa melihat dari rasio atau bunganya saja di saham sudah lebih besar daripada bunga deposito.Jika diasumsikan bunga Deposito 2% sedangkan saham 9%. NIlai FV dari saham adalah $13.080 dan FV dari deposito adalah $12.240.
Pemilihan investasi yang mana yang lebih baik tergantung dari profil risiko suatu investor. JIka toleransi kerugiannya tinggi/agresif, bisa dicoba yang saham. Jika profil risikonya biasa saja atau kecil toleransi kerugiannya bisa mencoba deposito bank.

Case 3

Question:

Calculate the future value of an investment with regular contributions. The investment is compounded monthly, and the interest rate varies over time.
Assumptions:
+ Initial investment (PV): $10,000 + Monthly contribution: $500 + Time horizon: 2 years + Annual interest rate: ++ First year: 6% ++ Second year: 7% ++ Third year: 8% ++ Fourth year: 9% ++ Fifth year: 9.5%

Answer:

Used Future Value to solve this question and calculation using R:

# Define parameters
PV <- 10000
monthly_contribution <- 500
years <- 1 
months <- years * 12
interest_rates <- c(0.06, 0.07, 0.08, 0.09, 0.095)

# Initialize variables
FV <- numeric(months + 1)
FV[1] <- PV

# Calculate monthly future value
for (i in 1:months) {
  year <- ceiling(i / 12)
  monthly_rate <- interest_rates[year]
  FV[i + 1] <- FV[i] * (1 + monthly_rate/12) + monthly_contribution
}

# Calculate total future value
sum(FV)
## [1] 173696.4

The conclusion is total future value of the investment after 2 years, with an initial investment of $10,000, monthly contributions of $500, and varying interest rates, is approximately $173.606,4.