Teori Risiko
Tugas 1
| Kontak | : \(\downarrow\) |
| ali.19arifin@gmail.com | |
| https://www.instagram.com/arifin.alicia/ | |
| RPubs | https://rpubs.com/aliciaarifin/ |
| Nama | Alicia Arifin |
| NIM | 20214920001 |
| Prodi | Statistika, 2021 |
Case 1
Question:
Suppose you work for a financial institution, and your team is tasked with pricing European call options on a stock. The stock in question is currently trading at $100 per share, and the risk-free interest rate is 5% per annum. The volatility of the stock is estimated to be 20% per annum. The option has a maturity of 6 months.
Answer:
Used Future Value to solve this question and calculation
using R:
PV_stock <- 100
r <- 0.05 # Annual risk-free rate
T <- 0.5 # 6 months or half a year
FV_stock <- PV_stock * (1 + r)^T
FV_stock## [1] 102.4695
library(stats)
# Define variables for Black-Scholes formula
S0 <- 100 # current stock price
X <- 100 # strike price
r <- 0.05 # risk-free interest rate per annum
T <- 0.5 # time to maturity in years
sigma <- 0.20 # volatility per annum
# Calculate d1 and d2 for the Black-Scholes formula
d1 <- (log(S0 / X) + (r + (sigma^2 / 2)) * T) / (sigma * sqrt(T))
d2 <- d1 - sigma * sqrt(T)
# Calculate the price of the European call option using Black-Scholes formula
C <- S0 * pnorm(d1) - X * exp(-r * T) * pnorm(d2)
# Print the call option price
print(C)## [1] 6.888729
The conclusion is:
Case 2
Question:
Let’s consider a scenario where an investor is evaluating two investment opportunities: investing in a stock market index fund or depositing the same amount of money in a savings account. The investor has $12,000 to invest and has to decide whether to invest it now or wait for a year. Suppose the expected return from the stock market index fund is 9% per year, while the interest rate on the savings account is 2% per year.
Answer:
PV <- 12000 # nilai uang sekarang
r_stock <- 0.09 #bunga p.a dalam pasar saham
r_saving <- 0.02 #bunga p.a dalam bank deposito
n <- 1 # dalam tahunan
#menghitung FV untuk pasar saham
FV_stock_market <- PV * (1 + r_stock)^n
# menghitung future value untuk bunga deposito
FV_savings_account <- PV * (1 + r_saving)^n
# Print the results
cat("FV jika diinvestasikan dalam saham :", FV_stock_market, "\n")## FV jika diinvestasikan dalam saham : 13080
## FV jika diinvestasikan dalam bunga deposito : 12240
The conclusions are:
Ketika investor ingin
menginvestasikan$12.000 ke dalam saham atau deposito kita
bisa melihat dari rasio atau bunganya saja di saham sudah lebih besar
daripada bunga deposito.Jika diasumsikan bunga Deposito 2% sedangkan
saham 9%. NIlai FV dari saham adalah $13.080 dan FV dari
deposito adalah $12.240.
Pemilihan investasi yang mana
yang lebih baik tergantung dari profil risiko suatu investor. JIka
toleransi kerugiannya tinggi/agresif, bisa dicoba yang saham. Jika
profil risikonya biasa saja atau kecil toleransi kerugiannya bisa
mencoba deposito bank.
Case 3
Question:
Calculate the future value of an investment with regular
contributions. The investment is compounded monthly, and the interest
rate varies over time.
Assumptions:
+ Initial investment (PV):
$10,000 + Monthly contribution: $500 + Time horizon: 2 years + Annual
interest rate: ++ First year: 6% ++ Second year: 7% ++ Third year: 8% ++
Fourth year: 9% ++ Fifth year: 9.5%
Answer:
Used Future Value to solve this question and calculation
using R:
# Define parameters
PV <- 10000
monthly_contribution <- 500
years <- 1
months <- years * 12
interest_rates <- c(0.06, 0.07, 0.08, 0.09, 0.095)
# Initialize variables
FV <- numeric(months + 1)
FV[1] <- PV
# Calculate monthly future value
for (i in 1:months) {
year <- ceiling(i / 12)
monthly_rate <- interest_rates[year]
FV[i + 1] <- FV[i] * (1 + monthly_rate/12) + monthly_contribution
}
# Calculate total future value
sum(FV)## [1] 173696.4
The conclusion is total future value of the investment after 2 years,
with an initial investment of $10,000, monthly
contributions of $500, and varying interest rates, is
approximately $173.606,4.