
Email : calvin.riswandi@student.matanuniversity.ac.id
RPubs : https://rpubs.com/calvinriswandy/
Jurusan
: Statistika
Bisnis
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng,
Kelapa Dua, Tangerang, Banten 15810.
soal 1
Suppose you work for a financial institution, and your team is tasked
with pricing European call options on a stock. The stock in question is
currently trading at $100 per share, and the risk-free interest rate is
5% per annum. The volatility of the stock is estimated to be 20% per
annum. The option has a maturity of 6 months.
jawaban :
Nilai masa depan investasi future value :
PV_stock <- 100
r <- 0.05 # Annual risk-free rate
T <- 0.5 # 6 months
FV_stock <- PV_stock * (1 + r)^T
FV_stock
## [1] 102.4695
Hasil perhitungan ini menunjukkan bahwa nilai future value dari
investasi langsung pada saham, setelah 6 bulan, adalah sekitar
$102,4595.
Menghitung nilai volatility menggunakan Black-Scholes :
# Define the parameters
S0 <- 100 # Harga Saham saat ini
X <- 100 # Harga kesepakatan
r <- 0.05 # Risk-free interest rate
sigma <- 0.20 # Volatility
T <- 0.5 # Time to maturity (in years)
# Menghitung d1 and d2
d1 <- (log(S0/X) + (r + sigma^2/2) * T) / (sigma * sqrt(T))
d2 <- d1 - sigma * sqrt(T)
# Hitung option price menggunakan rumus Black-Scholesa
N_d1 <- pnorm(d1)
N_d2 <- pnorm(d2)
Call_Price <- S0 * N_d1 - exp(-r * T) * X * N_d2
# Print the result
print(Call_Price)
## [1] 6.888729
Jadi, harga opsi panggilan Eropa dengan harga kesepakatan
$100 akan menjadi sekitar $6,888729.
soal 2
Let’s consider a scenario where an investor is evaluating two
investment opportunities: investing in a stock market index fund or
depositing the same amount of money in a savings account. The investor
has $12,000 to invest and has to decide whether to invest it now or wait
for a year. Suppose the expected return from the stock market index fund
is 9% per year, while the interest rate on the savings account is 2% per
year.
jawaban :
# Define parameters
PV <- 12000
r_stock <- 0.09
r_saving <- 0.02
n <- 1 # in years
# future value untuk dana indeks pasar saham:
FV_stock_market <- PV * (1 + r_stock)^n
# future value untuk rekening tabungan:
FV_savings_account <- PV * (1 + r_saving)^n
FV_stock_market
## [1] 13080
## [1] 12240
Jika investor memasukkan dana sebesar $12.000 ke
dalam dana indeks pasar saham, mereka dapat memperkirakan dana tersebut
akan tumbuh menjadi $13.080 setelah satu tahun, dengan
asumsi tingkat pengembalian tahunan sebesar 9%.
Jika memilih untuk menyimpan dana di tabungan dengan tingkat
bunga tahunan sebesar 2%, investasinya diperkirakan akan tumbuh menjadi
$12.240 setelah satu tahun.
Soal 3
Calculate the future value of an investment with regular
contributions. The investment is compounded monthly, and the interest
rate varies over time. Assumptions:
- Initial investment (PV): $10.000
- Monthly contribution: $500
- Time horizon: 3 years # with the last two digits of your student ID
number
- Annual interest rate:
- First year: 6%
- Second year: 7%
- Third year: 8%
- Fourth year: 9%
- Fifth year: 9.5%
Jawaban :
# Define parameters
PV <- 10000
monthly_contribution <- 500
years <- 3 # with the last two digits of your student ID number
months <- years * 12
interest_rates <- c(0.06, 0.07, 0.08, 0.09, 0.095)
# Initialize variables
FV <- numeric(months + 1)
FV[1] <- PV
# Calculate monthly future value
for (i in 1:months) {
year <- ceiling(i / 12)
monthly_rate <- interest_rates[year]
FV[i + 1] <- FV[i] * (1 + monthly_rate/12) + monthly_contribution
}
# Calculate total future value
sum(FV)
## [1] 765954
Kesimpulannya adalah total nilai investasi di masa depan setelah 2
tahun, dengan investasi awal sebesar $10.000, kontribusi bulanan sebesar
$500, dan tingkat suku bunga yang bervariasi, adalah sekitar
$765.954.
CgotLS0KdGl0bGU6ICJQZXJtb2RlbGFuIGRhbiBUZW9yaSBSaXNpa28iCnN1YnRpdGxlOiAiVHVnYXMgMSIKYXV0aG9yOiAiQ2FsdmluIFJpc3dhbmRpICgyMDIxNDkyMDAwMykiCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OiAKICAgIGh0bWxfZG9jdW1lbnQ6IG51bGwKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiB5ZXMKICAgIG51bWJlcl9zZWN0aW9uczogeWVzCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMKICAgIHRoZW1lOiBzYW5kc3RvbmUKICAgIGNzczogc3R5bGUxLmNzcwogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lCi0tLQoKCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoIkxvZ28ucG5nIikKYGBgCgpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICBjYWx2aW4ucmlzd2FuZGlAc3R1ZGVudC5tYXRhbnVuaXZlcnNpdHkuYWMuaWQgPGJyPgpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9jYWx2aW5yaXN3YW5keS8gPGJyPgpKdXJ1c2FuICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IFtTdGF0aXN0aWthIEJpc25pc10oaHR0cHM6Ly9tYXRhbmF1bml2ZXJzaXR5LmFjLmlkLz9seT1hY2FkZW1pYyZjPXNiKSA8YnI+CkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IEFSQSBDZW50ZXIsIE1hdGFuYSBVbml2ZXJzaXR5IFRvd2VyIDxicj4KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuCgoqKioqCgojIHNvYWwgMQoKU3VwcG9zZSB5b3Ugd29yayBmb3IgYSBmaW5hbmNpYWwgaW5zdGl0dXRpb24sIGFuZCB5b3VyIHRlYW0gaXMgdGFza2VkIHdpdGggcHJpY2luZyBFdXJvcGVhbiBjYWxsIG9wdGlvbnMgb24gYSBzdG9jay4gVGhlIHN0b2NrIGluIHF1ZXN0aW9uIGlzIGN1cnJlbnRseSB0cmFkaW5nIGF0ICQxMDAgcGVyIHNoYXJlLCBhbmQgdGhlIHJpc2stZnJlZSBpbnRlcmVzdCByYXRlIGlzIDUlIHBlciBhbm51bS4gVGhlIHZvbGF0aWxpdHkgb2YgdGhlIHN0b2NrIGlzIGVzdGltYXRlZCB0byBiZSAyMCUgcGVyIGFubnVtLiBUaGUgb3B0aW9uIGhhcyBhIG1hdHVyaXR5IG9mIDYgbW9udGhzLgoKamF3YWJhbiA6CgpOaWxhaSBtYXNhIGRlcGFuIGludmVzdGFzaSBmdXR1cmUgdmFsdWUgOgpgYGB7cn0KUFZfc3RvY2sgPC0gMTAwCnIgPC0gMC4wNSAjIEFubnVhbCByaXNrLWZyZWUgcmF0ZQpUIDwtIDAuNSAgIyA2IG1vbnRocwoKRlZfc3RvY2sgPC0gUFZfc3RvY2sgKiAoMSArIHIpXlQKRlZfc3RvY2sKYGBgCkhhc2lsIHBlcmhpdHVuZ2FuIGluaSBtZW51bmp1a2thbiBiYWh3YSBuaWxhaSBmdXR1cmUgdmFsdWUgZGFyaSBpbnZlc3Rhc2kgbGFuZ3N1bmcgcGFkYSBzYWhhbSwgc2V0ZWxhaCA2IGJ1bGFuLCBhZGFsYWggc2VraXRhciBgJDEwMiw0NTk1YC4KCk1lbmdoaXR1bmcgbmlsYWkgdm9sYXRpbGl0eSBtZW5nZ3VuYWthbiBCbGFjay1TY2hvbGVzIDoKYGBge3J9CiMgRGVmaW5lIHRoZSBwYXJhbWV0ZXJzClMwIDwtIDEwMCAgICAgIyBIYXJnYSBTYWhhbSBzYWF0IGluaQpYIDwtIDEwMCAgICAgICMgSGFyZ2Ega2VzZXBha2F0YW4KciA8LSAwLjA1ICAgICAjIFJpc2stZnJlZSBpbnRlcmVzdCByYXRlCnNpZ21hIDwtIDAuMjAgIyBWb2xhdGlsaXR5ClQgPC0gMC41ICAgICAgIyBUaW1lIHRvIG1hdHVyaXR5IChpbiB5ZWFycykKCiMgTWVuZ2hpdHVuZyBkMSBhbmQgZDIKZDEgPC0gKGxvZyhTMC9YKSArIChyICsgc2lnbWFeMi8yKSAqIFQpIC8gKHNpZ21hICogc3FydChUKSkKZDIgPC0gZDEgLSBzaWdtYSAqIHNxcnQoVCkKCiMgSGl0dW5nIG9wdGlvbiBwcmljZSBtZW5nZ3VuYWthbiBydW11cyBCbGFjay1TY2hvbGVzYQpOX2QxIDwtIHBub3JtKGQxKQpOX2QyIDwtIHBub3JtKGQyKQoKQ2FsbF9QcmljZSA8LSBTMCAqIE5fZDEgLSBleHAoLXIgKiBUKSAqIFggKiAgTl9kMgoKIyBQcmludCB0aGUgcmVzdWx0CnByaW50KENhbGxfUHJpY2UpCgpgYGAKCkphZGksIGhhcmdhIG9wc2kgcGFuZ2dpbGFuIEVyb3BhIGRlbmdhbiBoYXJnYSBrZXNlcGFrYXRhbiBgJDEwMGAgYWthbiBtZW5qYWRpIHNla2l0YXIgYCQ2LDg4ODcyOWAuCgoKIyBzb2FsIDIKCkxldCdzIGNvbnNpZGVyIGEgc2NlbmFyaW8gd2hlcmUgYW4gaW52ZXN0b3IgaXMgZXZhbHVhdGluZyB0d28gaW52ZXN0bWVudCBvcHBvcnR1bml0aWVzOiBpbnZlc3RpbmcgaW4gYSBzdG9jayBtYXJrZXQgaW5kZXggZnVuZCBvciBkZXBvc2l0aW5nIHRoZSBzYW1lIGFtb3VudCBvZiBtb25leSBpbiBhIHNhdmluZ3MgYWNjb3VudC4gVGhlIGludmVzdG9yIGhhcyAkMTIsMDAwIHRvIGludmVzdCBhbmQgaGFzIHRvIGRlY2lkZSB3aGV0aGVyIHRvIGludmVzdCBpdCBub3cgb3Igd2FpdCBmb3IgYSB5ZWFyLiBTdXBwb3NlIHRoZSBleHBlY3RlZCByZXR1cm4gZnJvbSB0aGUgc3RvY2sgbWFya2V0IGluZGV4IGZ1bmQgaXMgOSUgcGVyIHllYXIsIHdoaWxlIHRoZSBpbnRlcmVzdCByYXRlIG9uIHRoZSBzYXZpbmdzIGFjY291bnQgaXMgMiUgcGVyIHllYXIuCgpqYXdhYmFuIDoKCmBgYHtyfQojIERlZmluZSBwYXJhbWV0ZXJzClBWIDwtIDEyMDAwCnJfc3RvY2sgPC0gMC4wOQpyX3NhdmluZyA8LSAwLjAyCm4gPC0gMSAgIyBpbiB5ZWFycwoKIyBmdXR1cmUgdmFsdWUgdW50dWsgZGFuYSBpbmRla3MgcGFzYXIgc2FoYW06CkZWX3N0b2NrX21hcmtldCA8LSBQViAqICgxICsgcl9zdG9jaylebgoKIyBmdXR1cmUgdmFsdWUgdW50dWsgcmVrZW5pbmcgdGFidW5nYW46IApGVl9zYXZpbmdzX2FjY291bnQgPC0gUFYgKiAoMSArIHJfc2F2aW5nKV5uCgpGVl9zdG9ja19tYXJrZXQKRlZfc2F2aW5nc19hY2NvdW50CmBgYAotIEppa2EgaW52ZXN0b3IgbWVtYXN1a2thbiBkYW5hIHNlYmVzYXIgYCQxMi4wMDBgIGtlIGRhbGFtIGRhbmEgaW5kZWtzIHBhc2FyIHNhaGFtLCBtZXJla2EgZGFwYXQgbWVtcGVya2lyYWthbiBkYW5hIHRlcnNlYnV0IGFrYW4gdHVtYnVoIG1lbmphZGkgYCQxMy4wODBgIHNldGVsYWggc2F0dSB0YWh1biwgZGVuZ2FuIGFzdW1zaSB0aW5na2F0IHBlbmdlbWJhbGlhbiB0YWh1bmFuIHNlYmVzYXIgOSUuIAoKLSBKaWthIG1lbWlsaWggdW50dWsgbWVueWltcGFuIGRhbmEgZGkgdGFidW5nYW4gZGVuZ2FuIHRpbmdrYXQgYnVuZ2EgdGFodW5hbiBzZWJlc2FyIDIlLCBpbnZlc3Rhc2lueWEgZGlwZXJraXJha2FuIGFrYW4gdHVtYnVoIG1lbmphZGkgYCQxMi4yNDBgIHNldGVsYWggc2F0dSB0YWh1bi4KCiMgU29hbCAzCgpDYWxjdWxhdGUgdGhlIGZ1dHVyZSB2YWx1ZSBvZiBhbiBpbnZlc3RtZW50IHdpdGggcmVndWxhciBjb250cmlidXRpb25zLiBUaGUgaW52ZXN0bWVudCBpcyBjb21wb3VuZGVkIG1vbnRobHksIGFuZCB0aGUgaW50ZXJlc3QgcmF0ZSB2YXJpZXMgb3ZlciB0aW1lLgpBc3N1bXB0aW9uczoKCiogSW5pdGlhbCBpbnZlc3RtZW50IChQVik6ICQxMC4wMDAKKiBNb250aGx5IGNvbnRyaWJ1dGlvbjogJDUwMAoqIFRpbWUgaG9yaXpvbjogMyB5ZWFycyAjIHdpdGggdGhlIGxhc3QgdHdvIGRpZ2l0cyBvZiB5b3VyIHN0dWRlbnQgSUQgbnVtYmVyCiogQW5udWFsIGludGVyZXN0IHJhdGU6Ci0gRmlyc3QgeWVhcjogNiUKLSBTZWNvbmQgeWVhcjogNyUKLSBUaGlyZCB5ZWFyOiA4JQotIEZvdXJ0aCB5ZWFyOiA5JQotIEZpZnRoIHllYXI6IDkuNSUKCkphd2FiYW4gOgoKYGBge3J9CiMgRGVmaW5lIHBhcmFtZXRlcnMKUFYgPC0gMTAwMDAKbW9udGhseV9jb250cmlidXRpb24gPC0gNTAwCnllYXJzIDwtIDMgIyB3aXRoIHRoZSBsYXN0IHR3byBkaWdpdHMgb2YgeW91ciBzdHVkZW50IElEIG51bWJlciAKbW9udGhzIDwtIHllYXJzICogMTIKaW50ZXJlc3RfcmF0ZXMgPC0gYygwLjA2LCAwLjA3LCAwLjA4LCAwLjA5LCAwLjA5NSkKCiMgSW5pdGlhbGl6ZSB2YXJpYWJsZXMKRlYgPC0gbnVtZXJpYyhtb250aHMgKyAxKQpGVlsxXSA8LSBQVgoKIyBDYWxjdWxhdGUgbW9udGhseSBmdXR1cmUgdmFsdWUKZm9yIChpIGluIDE6bW9udGhzKSB7CiAgeWVhciA8LSBjZWlsaW5nKGkgLyAxMikKICBtb250aGx5X3JhdGUgPC0gaW50ZXJlc3RfcmF0ZXNbeWVhcl0KICBGVltpICsgMV0gPC0gRlZbaV0gKiAoMSArIG1vbnRobHlfcmF0ZS8xMikgKyBtb250aGx5X2NvbnRyaWJ1dGlvbgp9CgojIENhbGN1bGF0ZSB0b3RhbCBmdXR1cmUgdmFsdWUKc3VtKEZWKQpgYGAKCktlc2ltcHVsYW5ueWEgYWRhbGFoIHRvdGFsIG5pbGFpIGludmVzdGFzaSBkaSBtYXNhIGRlcGFuIHNldGVsYWggMiB0YWh1biwgZGVuZ2FuIGludmVzdGFzaSBhd2FsIHNlYmVzYXIgJDEwLjAwMCwga29udHJpYnVzaSBidWxhbmFuIHNlYmVzYXIgJDUwMCwgZGFuIHRpbmdrYXQgc3VrdSBidW5nYSB5YW5nIGJlcnZhcmlhc2ksIGFkYWxhaCBzZWtpdGFyIGAkNzY1Ljk1NGAuCgoKCgoK