For this project, we were asked to take a highly formatted report of chess tournament scores and create a flat .csv file with selected stats by player for use in a database.
The report was not suitable in its initial format and extensive preparation was needed: each player’s data was wrapped onto two rows with dashed lines separating them, along with inconsistent separators between fields, missing values, and other challenges. Additionally, one of the metrics requested was the average pre-chess rating of each player’s opponents, which required joins and aggregation.
I began by reading in the text file as a vector to unwrap it using the scan function, specifying a pipe delimiter, removing extra white space, and skipping the first four rows (which followed a different pattern from the rest of the data).
Then I used rbind and split to force it into 23 columns per row to make my first dataframe of unwrapped, mostly-parsed data:
#--------READ IN FILE, UNWRAP ROWS, SPLIT INTO 23 FIELDS AND MAKE A DF
d<-"c:/users/amand/git_projects/DATA607/Project_1/data.txt"
v <- scan(file=d, sep="|",what='',skip=4,strip.white = TRUE)
unwrapped<-do.call(rbind, split(v, rep(1:(length(v) %/% 23), each=23)))
unwrapped<-as.data.frame(unwrapped)
I did some basic cleanup on this dataframe, removing blank columns and adding column names:
#--------DROP COLUMNS 11 & 22 (BLANK) AND 23 (DASHES), ADD COLUMN NAMES
unwrapped<-unwrapped[,1:21]
unwrapped<-unwrapped[,-11]
colnames(unwrapped)<-c("Pair","Player_Name","Points","Round_1","Round_2","Round_3","Round_4",
"Round_5","Round_6","Round_7","State","Player_ID_Rating","Not_Used1","Not_Used2",
"Not_Used3","Not_Used4","Not_Used5","Not_Used6","Not_Used7","Not_Used8")
Many columns created by the pipe-delimited methodology above needed to be separated further. I used three different versions of the separate function to do so:
Rounds: Used “separate” to break into “WLD” and “Opponent”. R was able to separate these pretty well, but I needed to handle two cases: I used “extra” to force R to not break double-digit player IDs into two fields, and “fill” to handle cases where there was no opponent.
Player ID and Rating Pre/Post: I used regex to separate these, which took more time than “separate” above but allowed me to be very specific.
Provisional Rating: Finally, I used delimiter = “P” to easily separate the provisional designations from ratings where they were present. This was necessary in order to convert ratings to numeric for aggregation later.
#--------SEPARATE ROUNDS DATA
unwrapped_sep<-
unwrapped %>% separate(Round_1, c("Round_1_WLD","Round_1_Opponent"),extra="merge",fill="right")
unwrapped_sep<-
unwrapped_sep %>% separate(Round_2, c("Round_2_WLD","Round_2_Opponent"),extra="merge",fill="right")
unwrapped_sep<-
unwrapped_sep %>% separate(Round_3, c("Round_3_WLD","Round_3_Opponent"),extra="merge",fill="right")
unwrapped_sep<-
unwrapped_sep %>% separate(Round_4, c("Round_4_WLD","Round_4_Opponent"),extra="merge",fill="right")
unwrapped_sep<-
unwrapped_sep %>% separate(Round_5, c("Round_5_WLD","Round_5_Opponent"),extra="merge",fill="right")
unwrapped_sep<-
unwrapped_sep %>% separate(Round_6, c("Round_6_WLD","Round_6_Opponent"),extra="merge",fill="right")
unwrapped_sep<-
unwrapped_sep %>% separate(Round_7, c("Round_7_WLD","Round_7_Opponent"),extra="merge",fill="right")
#--------SEPARATE PLAYER ID AND RATING PRE- POST-
unwrapped_sep<- unwrapped_sep %>% separate_wider_regex(Player_ID_Rating, c(Player_ID = "^\\d.*","\\/\\s*R\\s*\\:",misc = ".*"))
unwrapped_sep<- unwrapped_sep %>% separate_wider_regex(misc, c(Rating_Pre = "^\\s*\\d*\\d*\\d*\\d*.*.*.*","\\-\\s*\\>",Rating_Post = ".*"))
#--------SEPARATE PROVISIONAL DESIGNATIONS
unwrapped_sep<- unwrapped_sep %>% separate_wider_delim(Rating_Pre, delim="P",names=c("Rating_Pre","P_Pre"),too_few = "align_start")
unwrapped_sep<- unwrapped_sep %>% separate_wider_delim(Rating_Post, delim="P",names=c("Rating_Post","P_Post"),too_few = "align_start")
After separating fields, I used transform to change five fields to data type numeric. This also got rid of any leading/trailing spaces left in the ratings columns by separating them above.
#--------MAKE POINTS AND RATINGS NUMERIC
unwrapped_sep_fin <- transform(unwrapped_sep,Points = as.numeric(Points))
unwrapped_sep_fin <- transform(unwrapped_sep_fin,Rating_Pre = as.numeric(Rating_Pre))
unwrapped_sep_fin <- transform(unwrapped_sep_fin,Rating_Post = as.numeric(Rating_Post))
unwrapped_sep_fin <- transform(unwrapped_sep_fin,P_Pre = as.numeric(P_Pre))
unwrapped_sep_fin <- transform(unwrapped_sep_fin,P_Post = as.numeric(P_Post))
With all cleanup complete, I created a simplified dataframe with only columns required for the analysis. I also created a small dataframe of ratings by player to use as a lookup for the final step of adding opponents’ average ratings.
After creating these final dataframes, I used str() to verify columns and data types before joining them:
#--------CREATE SIMPLIFIED DF
df <- unwrapped_sep_fin[,c("Pair","Player_ID","Player_Name","State","Points",
"Rating_Pre","Round_1_Opponent","Round_2_Opponent","Round_3_Opponent",
"Round_4_Opponent","Round_5_Opponent","Round_6_Opponent","Round_7_Opponent")]
# ---------MAKE RATINGS TABLE
df_ratings <- df[,c("Pair","Rating_Pre")]
str(df)
## 'data.frame': 64 obs. of 13 variables:
## $ Pair : chr "1" "2" "3" "4" ...
## $ Player_ID : chr "15445895 " "14598900 " "14959604 " "12616049 " ...
## $ Player_Name : chr "GARY HUA" "DAKSHESH DARURI" "ADITYA BAJAJ" "PATRICK H SCHILLING" ...
## $ State : chr "ON" "MI" "MI" "MI" ...
## $ Points : num 6 6 6 5.5 5.5 5 5 5 5 5 ...
## $ Rating_Pre : num 1794 1553 1384 1716 1655 ...
## $ Round_1_Opponent: chr "39" "63" "8" "23" ...
## $ Round_2_Opponent: chr "21" "58" "61" "28" ...
## $ Round_3_Opponent: chr "18" "4" "25" "2" ...
## $ Round_4_Opponent: chr "14" "17" "21" "26" ...
## $ Round_5_Opponent: chr "7" "16" "11" "5" ...
## $ Round_6_Opponent: chr "12" "20" "13" "19" ...
## $ Round_7_Opponent: chr "4" "7" "12" "1" ...
str(df_ratings)
## 'data.frame': 64 obs. of 2 variables:
## $ Pair : chr "1" "2" "3" "4" ...
## $ Rating_Pre: num 1794 1553 1384 1716 1655 ...
I used a left join between my two new simplified dataframes to add seven new columns: each player’s opponents’ ratings by Round. I then renamed the new columns and validated with str().
# ---------POPULATE OPP RATINGS IN DF
df <- df %>% left_join(df_ratings, join_by(x$Round_1_Opponent == y$Pair))
df <- df %>% left_join(df_ratings, join_by(x$Round_2_Opponent == y$Pair))
df <- df %>% left_join(df_ratings, join_by(x$Round_3_Opponent == y$Pair))
df <- df %>% left_join(df_ratings, join_by(x$Round_4_Opponent == y$Pair))
df <- df %>% left_join(df_ratings, join_by(x$Round_5_Opponent == y$Pair))
df <- df %>% left_join(df_ratings, join_by(x$Round_6_Opponent == y$Pair))
df <- df %>% left_join(df_ratings, join_by(x$Round_7_Opponent == y$Pair))
#---------RENAME COLUMNS
colnames(df)<-c("Pair","Player_ID","Player_Name","State","Points","Rating_Pre","Round_1_Opponent",
"Round_2_Opponent","Round_3_Opponent","Round_4_Opponent","Round_5_Opponent","Round_6_Opponent",
"Round_7_Opponent","Round_1_Opp_Rate","Round_2_Opp_Rate","Round_3_Opp_Rate",
"Round_4_Opp_Rate","Round_5_Opp_Rate","Round_6_Opp_Rate","Round_7_Opp_Rate")
str(df)
## 'data.frame': 64 obs. of 20 variables:
## $ Pair : chr "1" "2" "3" "4" ...
## $ Player_ID : chr "15445895 " "14598900 " "14959604 " "12616049 " ...
## $ Player_Name : chr "GARY HUA" "DAKSHESH DARURI" "ADITYA BAJAJ" "PATRICK H SCHILLING" ...
## $ State : chr "ON" "MI" "MI" "MI" ...
## $ Points : num 6 6 6 5.5 5.5 5 5 5 5 5 ...
## $ Rating_Pre : num 1794 1553 1384 1716 1655 ...
## $ Round_1_Opponent: chr "39" "63" "8" "23" ...
## $ Round_2_Opponent: chr "21" "58" "61" "28" ...
## $ Round_3_Opponent: chr "18" "4" "25" "2" ...
## $ Round_4_Opponent: chr "14" "17" "21" "26" ...
## $ Round_5_Opponent: chr "7" "16" "11" "5" ...
## $ Round_6_Opponent: chr "12" "20" "13" "19" ...
## $ Round_7_Opponent: chr "4" "7" "12" "1" ...
## $ Round_1_Opp_Rate: num 1436 1175 1641 1363 1242 ...
## $ Round_2_Opp_Rate: num 1563 917 955 1507 980 ...
## $ Round_3_Opp_Rate: num 1600 1716 1745 1553 1663 ...
## $ Round_4_Opp_Rate: num 1610 1629 1563 1579 1666 ...
## $ Round_5_Opp_Rate: num 1649 1604 1712 1655 1716 ...
## $ Round_6_Opp_Rate: num 1663 1595 1666 1564 1610 ...
## $ Round_7_Opp_Rate: num 1716 1649 1663 1794 1629 ...
Finally, the transform function was used to add the final column: the mean of each player’s opponents’ pre-chess ratings. This was a little challenging due to missing values: the na.rm argument was required to ignore (remove) the NA values for accurate means.
#---------ADD COL WITH AVERAGE OPP SCORES
df <- transform(df, Opp_Avg_Rate = round(rowMeans(df[,14:20], na.rm = TRUE)))
With all required columns now in the dataframe “df,” I created the final output dataframe “chess_data” with only the columns required for this exercise and used write.csv to export it.
#---------MAKE FINAL SUMMARY TABLE AND GENERATE .CSV TO WORKING DIRECTORY
chess_data <- df [,c("Player_Name","State","Points","Rating_Pre","Opp_Avg_Rate")]
write.csv(chess_data,file='chess_data_output.csv', row.names=FALSE)
chess_data
## Player_Name State Points Rating_Pre Opp_Avg_Rate
## 1 GARY HUA ON 6.0 1794 1605
## 2 DAKSHESH DARURI MI 6.0 1553 1469
## 3 ADITYA BAJAJ MI 6.0 1384 1564
## 4 PATRICK H SCHILLING MI 5.5 1716 1574
## 5 HANSHI ZUO MI 5.5 1655 1501
## 6 HANSEN SONG OH 5.0 1686 1519
## 7 GARY DEE SWATHELL MI 5.0 1649 1372
## 8 EZEKIEL HOUGHTON MI 5.0 1641 1468
## 9 STEFANO LEE ON 5.0 1411 1523
## 10 ANVIT RAO MI 5.0 1365 1554
## 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 1468
## 12 KENNETH J TACK MI 4.5 1663 1506
## 13 TORRANCE HENRY JR MI 4.5 1666 1498
## 14 BRADLEY SHAW MI 4.5 1610 1515
## 15 ZACHARY JAMES HOUGHTON MI 4.5 1220 1484
## 16 MIKE NIKITIN MI 4.0 1604 1386
## 17 RONALD GRZEGORCZYK MI 4.0 1629 1499
## 18 DAVID SUNDEEN MI 4.0 1600 1480
## 19 DIPANKAR ROY MI 4.0 1564 1426
## 20 JASON ZHENG MI 4.0 1595 1411
## 21 DINH DANG BUI ON 4.0 1563 1470
## 22 EUGENE L MCCLURE MI 4.0 1555 1300
## 23 ALAN BUI ON 4.0 1363 1214
## 24 MICHAEL R ALDRICH MI 4.0 1229 1357
## 25 LOREN SCHWIEBERT MI 3.5 1745 1363
## 26 MAX ZHU ON 3.5 1579 1507
## 27 GAURAV GIDWANI MI 3.5 1552 1222
## 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507 1522
## 29 CHIEDOZIE OKORIE MI 3.5 1602 1314
## 30 GEORGE AVERY JONES ON 3.5 1522 1144
## 31 RISHI SHETTY MI 3.5 1494 1260
## 32 JOSHUA PHILIP MATHEWS ON 3.5 1441 1379
## 33 JADE GE MI 3.5 1449 1277
## 34 MICHAEL JEFFERY THOMAS MI 3.5 1399 1375
## 35 JOSHUA DAVID LEE MI 3.5 1438 1150
## 36 SIDDHARTH JHA MI 3.5 1355 1388
## 37 AMIYATOSH PWNANANDAM MI 3.5 980 1385
## 38 BRIAN LIU MI 3.0 1423 1539
## 39 JOEL R HENDON MI 3.0 1436 1430
## 40 FOREST ZHANG MI 3.0 1348 1391
## 41 KYLE WILLIAM MURPHY MI 3.0 1403 1248
## 42 JARED GE MI 3.0 1332 1150
## 43 ROBERT GLEN VASEY MI 3.0 1283 1107
## 44 JUSTIN D SCHILLING MI 3.0 1199 1327
## 45 DEREK YAN MI 3.0 1242 1152
## 46 JACOB ALEXANDER LAVALLEY MI 3.0 377 1358
## 47 ERIC WRIGHT MI 2.5 1362 1392
## 48 DANIEL KHAIN MI 2.5 1382 1356
## 49 MICHAEL J MARTIN MI 2.5 1291 1286
## 50 SHIVAM JHA MI 2.5 1056 1296
## 51 TEJAS AYYAGARI MI 2.5 1011 1356
## 52 ETHAN GUO MI 2.5 935 1495
## 53 JOSE C YBARRA MI 2.0 1393 1345
## 54 LARRY HODGE MI 2.0 1270 1206
## 55 ALEX KONG MI 2.0 1186 1406
## 56 MARISA RICCI MI 2.0 1153 1414
## 57 MICHAEL LU MI 2.0 1092 1363
## 58 VIRAJ MOHILE MI 2.0 917 1391
## 59 SEAN M MC CORMICK MI 2.0 853 1319
## 60 JULIA SHEN MI 1.5 967 1330
## 61 JEZZEL FARKAS ON 1.5 955 1327
## 62 ASHWIN BALAJI MI 1.0 1530 1186
## 63 THOMAS JOSEPH HOSMER MI 1.0 1175 1350
## 64 BEN LI MI 1.0 1163 1263