Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Changes the headings to be lowercased, then removes any spaced headings, and lastly# displays the first six rowsnames(hatecrimes) <-tolower(names(hatecrimes)) names(hatecrimes) <-gsub(" ","",names(hatecrimes))head(hatecrimes)
county year crimetype anti-male
Length:423 Min. :2010 Length:423 Min. :0.000000
Class :character 1st Qu.:2011 Class :character 1st Qu.:0.000000
Mode :character Median :2013 Mode :character Median :0.000000
Mean :2013 Mean :0.007092
3rd Qu.:2015 3rd Qu.:0.000000
Max. :2016 Max. :1.000000
anti-female anti-transgender anti-genderidentityexpression
Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.01655 Mean :0.04728 Mean :0.05674
3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.00000 Max. :5.00000 Max. :3.00000
anti-age* anti-white anti-black
Min. :0.00000 Min. : 0.0000 Min. : 0.000
1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
Median :0.00000 Median : 0.0000 Median : 1.000
Mean :0.05201 Mean : 0.3357 Mean : 1.761
3rd Qu.:0.00000 3rd Qu.: 0.0000 3rd Qu.: 2.000
Max. :9.00000 Max. :11.0000 Max. :18.000
anti-americanindian/alaskannative anti-asian
Min. :0.000000 Min. :0.0000
1st Qu.:0.000000 1st Qu.:0.0000
Median :0.000000 Median :0.0000
Mean :0.007092 Mean :0.1773
3rd Qu.:0.000000 3rd Qu.:0.0000
Max. :1.000000 Max. :8.0000
anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0.00000 Median :0
Mean :0 Mean :0.08511 Mean :0
3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :3.00000 Max. :0
anti-jewish anti-catholic anti-protestant anti-islamic(muslim)
Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 3.981 Mean : 0.2695 Mean :0.02364 Mean : 0.4704
3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :82.000 Max. :12.0000 Max. :1.00000 Max. :10.0000
anti-multi-religiousgroups anti-atheism/agnosticism
Min. : 0.00000 Min. :0
1st Qu.: 0.00000 1st Qu.:0
Median : 0.00000 Median :0
Mean : 0.07565 Mean :0
3rd Qu.: 0.00000 3rd Qu.:0
Max. :10.00000 Max. :0
anti-religiouspracticegenerally anti-otherreligion anti-buddhist
Min. :0.000000 Min. :0.000 Min. :0
1st Qu.:0.000000 1st Qu.:0.000 1st Qu.:0
Median :0.000000 Median :0.000 Median :0
Mean :0.007092 Mean :0.104 Mean :0
3rd Qu.:0.000000 3rd Qu.:0.000 3rd Qu.:0
Max. :2.000000 Max. :4.000 Max. :0
anti-easternorthodox(greek,russian,etc.) anti-hindu
Min. :0.000000 Min. :0.000000
1st Qu.:0.000000 1st Qu.:0.000000
Median :0.000000 Median :0.000000
Mean :0.002364 Mean :0.002364
3rd Qu.:0.000000 3rd Qu.:0.000000
Max. :1.000000 Max. :1.000000
anti-jehovahswitness anti-mormon anti-otherchristian anti-sikh
Min. :0 Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0 Median :0.00000 Median :0
Mean :0 Mean :0 Mean :0.01655 Mean :0
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :0 Max. :3.00000 Max. :0
anti-hispanic anti-arab anti-otherethnicity/nationalorigin
Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 0.3735 Mean :0.06619 Mean : 0.2837
3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :17.0000 Max. :2.00000 Max. :19.0000
anti-non-hispanic* anti-gaymale anti-gayfemale anti-gay(maleandfemale)
Min. :0 Min. : 0.000 Min. :0.0000 Min. :0.0000
1st Qu.:0 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0 Median : 0.000 Median :0.0000 Median :0.0000
Mean :0 Mean : 1.499 Mean :0.2411 Mean :0.1017
3rd Qu.:0 3rd Qu.: 1.000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :0 Max. :36.000 Max. :8.0000 Max. :4.0000
anti-heterosexual anti-bisexual anti-physicaldisability
Min. :0.000000 Min. :0.000000 Min. :0.00000
1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.000000 Median :0.000000 Median :0.00000
Mean :0.002364 Mean :0.004728 Mean :0.01182
3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :1.000000 Max. :1.000000 Max. :1.00000
anti-mentaldisability totalincidents totalvictims totaloffenders
Min. :0.000000 Min. : 1.00 Min. : 1.00 Min. : 1.00
1st Qu.:0.000000 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.00
Median :0.000000 Median : 3.00 Median : 3.00 Median : 3.00
Mean :0.009456 Mean : 10.09 Mean : 10.48 Mean : 11.77
3rd Qu.:0.000000 3rd Qu.: 10.00 3rd Qu.: 10.00 3rd Qu.: 11.00
Max. :1.000000 Max. :101.00 Max. :106.00 Max. :113.00
# takes a few hate crime types and stores them in a separate dataset named hatecrimes2# this way we don't have a bunch of junk informationhatecrimes2 <- hatecrimes |>select(county, year, 'anti-black', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', `anti-multi-religiousgroups`, 'anti-gaymale', 'anti-hispanic', `anti-otherethnicity/nationalorigin`) |>group_by(county, year)head(hatecrimes2)
county year anti-black anti-white
Length:423 Min. :2010 Min. : 0.000 Min. : 0.0000
Class :character 1st Qu.:2011 1st Qu.: 0.000 1st Qu.: 0.0000
Mode :character Median :2013 Median : 1.000 Median : 0.0000
Mean :2013 Mean : 1.761 Mean : 0.3357
3rd Qu.:2015 3rd Qu.: 2.000 3rd Qu.: 0.0000
Max. :2016 Max. :18.000 Max. :11.0000
anti-jewish anti-catholic anti-age* anti-islamic(muslim)
Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 3.981 Mean : 0.2695 Mean :0.05201 Mean : 0.4704
3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :82.000 Max. :12.0000 Max. :9.00000 Max. :10.0000
anti-multi-religiousgroups anti-gaymale anti-hispanic
Min. : 0.00000 Min. : 0.000 Min. : 0.0000
1st Qu.: 0.00000 1st Qu.: 0.000 1st Qu.: 0.0000
Median : 0.00000 Median : 0.000 Median : 0.0000
Mean : 0.07565 Mean : 1.499 Mean : 0.3735
3rd Qu.: 0.00000 3rd Qu.: 1.000 3rd Qu.: 0.0000
Max. :10.00000 Max. :36.000 Max. :17.0000
anti-otherethnicity/nationalorigin
Min. : 0.0000
1st Qu.: 0.0000
Median : 0.0000
Mean : 0.2837
3rd Qu.: 0.0000
Max. :19.0000
# Converts the dataset from wide to long format by merging all of the columns into one single# column and takes their cell value and put them in their own separate column# then stores this in a new datasethatelong <- hatecrimes2 |>pivot_longer(cols =3:12,names_to ="victim_cat",values_to ="crimecount")
# creates a facet plot using the newly converted data sethatecrimplot <-hatelong |>ggplot(aes(year, crimecount))+geom_point()+aes(color = victim_cat)+facet_wrap(~victim_cat)hatecrimplot
# Filters the data to focus on crimes against balcks, gay males, and jews # then stores it in a new datasethatenew <- hatelong |>filter( victim_cat %in%c("anti-black", "anti-jewish", "anti-gaymale"))|>group_by(year, county) |>arrange(desc(crimecount))hatenew
# creates a bar graph showing the amount of times incidents have happened to the aforementioned groups throughout the yearsplot2 <- hatenew |>ggplot() +geom_bar(aes(x=year, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot2
# creates a bar graph showing the amount of times incidents have happened to the aforementioned groups throughout the counties... too many countiesplot3 <- hatenew |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot3
# group each row by counties to make the graph easier to readcounties <- hatenew |>group_by(year, county)|>summarize(sum =sum(crimecount)) |>arrange(desc(sum))
`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.
counties
# A tibble: 277 × 3
# Groups: year [7]
year county sum
<dbl> <chr> <dbl>
1 2012 Kings 136
2 2010 Kings 110
3 2016 Kings 101
4 2013 Kings 96
5 2014 Kings 94
6 2015 Kings 90
7 2011 Kings 86
8 2016 New York 86
9 2012 Suffolk 83
10 2013 New York 75
# ℹ 267 more rows
# A tibble: 5 × 2
county sum
<chr> <dbl>
1 Kings 713
2 New York 459
3 Suffolk 360
4 Nassau 298
5 Queens 235
# Focus on the top 5 counties with the highest total incidentscounties2 <- hatenew |>group_by(county)|>summarize(sum =sum(crimecount)) |>slice_max(order_by = sum, n=5)counties2
# A tibble: 5 × 2
county sum
<chr> <dbl>
1 Kings 713
2 New York 459
3 Suffolk 360
4 Nassau 298
5 Queens 235
# Bar plot showcasing the highest instances of hate crimes by countyplot4 <- hatenew |>filter(county %in%c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(y ="Number of Hate Crime Incidents",title ="5 Counties in NY with Highest Incidents of Hate Crimes",subtitle ="Between 2010-2016", fill ="Hate Crime Type",caption ="Source: NY State Division of Criminal Justice Services")plot4
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# clean up the dataset by renaming to match the other datasetnypop$Geography <-gsub(" , New York", "", nypop$Geography)nypop$Geography <-gsub("County", "", nypop$Geography)nypoplong <- nypop |>rename(county = Geography) |>gather("year", "population", 2:8) nypoplong$year <-as.double(nypoplong$year)head(nypoplong)
# A tibble: 6 × 3
county year population
<chr> <dbl> <dbl>
1 Albany , New York 2010 304078
2 Allegany , New York 2010 48949
3 Bronx , New York 2010 1388240
4 Broome , New York 2010 200469
5 Cattaraugus , New York 2010 80249
6 Cayuga , New York 2010 79844
# store all of the 2012 data on a separate data setnypoplong12 <- nypoplong |>filter(year ==2012) |>arrange(desc(population)) |>head(10)nypoplong12$county<-gsub(" , New York","",nypoplong12$county)nypoplong12
# A tibble: 10 × 3
county year population
<chr> <dbl> <dbl>
1 Kings 2012 2572282
2 Queens 2012 2278024
3 New York 2012 1625121
4 Suffolk 2012 1499382
5 Bronx 2012 1414774
6 Nassau 2012 1350748
7 Westchester 2012 961073
8 Erie 2012 920792
9 Monroe 2012 748947
10 Richmond 2012 470978
# do the same for the counties, only focusing on 2012counties12 <- counties |>filter(year ==2012) |>arrange(desc(sum)) counties12
# A tibble: 41 × 3
# Groups: year [1]
year county sum
<dbl> <chr> <dbl>
1 2012 Kings 136
2 2012 Suffolk 83
3 2012 New York 71
4 2012 Nassau 48
5 2012 Queens 48
6 2012 Erie 28
7 2012 Bronx 23
8 2012 Richmond 18
9 2012 Multiple 14
10 2012 Westchester 13
# ℹ 31 more rows
# merge/join together the two data setsdatajoin <- counties12 |>full_join(nypoplong12, by=c("county", "year"))datajoin
# A tibble: 41 × 4
# Groups: year [1]
year county sum population
<dbl> <chr> <dbl> <dbl>
1 2012 Kings 136 2572282
2 2012 Suffolk 83 1499382
3 2012 New York 71 1625121
4 2012 Nassau 48 1350748
5 2012 Queens 48 2278024
6 2012 Erie 28 920792
7 2012 Bronx 23 1414774
8 2012 Richmond 18 470978
9 2012 Multiple 14 NA
10 2012 Westchester 13 961073
# ℹ 31 more rows
# Calculate the rate of incidents per 100,000 then sort them by descending order and lastly store in another datasetdatajoinrate <- datajoin |>mutate(rate = sum/population*100000) |>arrange(desc(rate))datajoinrate
# A tibble: 41 × 5
# Groups: year [1]
year county sum population rate
<dbl> <chr> <dbl> <dbl> <dbl>
1 2012 Suffolk 83 1499382 5.54
2 2012 Kings 136 2572282 5.29
3 2012 New York 71 1625121 4.37
4 2012 Richmond 18 470978 3.82
5 2012 Nassau 48 1350748 3.55
6 2012 Erie 28 920792 3.04
7 2012 Queens 48 2278024 2.11
8 2012 Bronx 23 1414774 1.63
9 2012 Westchester 13 961073 1.35
10 2012 Monroe 5 748947 0.668
# ℹ 31 more rows
# highest rates in 2012dt <- datajoinrate[,c("county","rate")]dt
# A tibble: 41 × 2
county rate
<chr> <dbl>
1 Suffolk 5.54
2 Kings 5.29
3 New York 4.37
4 Richmond 3.82
5 Nassau 3.55
6 Erie 3.04
7 Queens 2.11
8 Bronx 1.63
9 Westchester 1.35
10 Monroe 0.668
# ℹ 31 more rows
# combine the categories in hate crimes datasetaggregategroups <- hatecrimes |>pivot_longer(cols =4:44,names_to ="victim_cat",values_to ="crimecount" )unique(aggregategroups$victim_cat)
# A tibble: 17,343 × 6
county year crimetype victim_cat crimecount group
<chr> <dbl> <chr> <chr> <dbl> <chr>
1 Albany 2016 Crimes Against Persons anti-male 0 anti…
2 Albany 2016 Crimes Against Persons anti-female 0 anti…
3 Albany 2016 Crimes Against Persons anti-transgender 0 anti…
4 Albany 2016 Crimes Against Persons anti-genderidentityexpr… 0 othe…
5 Albany 2016 Crimes Against Persons anti-age* 0 othe…
6 Albany 2016 Crimes Against Persons anti-white 0 anti…
7 Albany 2016 Crimes Against Persons anti-black 1 othe…
8 Albany 2016 Crimes Against Persons anti-americanindian/ala… 0 anti…
9 Albany 2016 Crimes Against Persons anti-asian 0 anti…
10 Albany 2016 Crimes Against Persons anti-nativehawaiian/pac… 0 anti…
# ℹ 17,333 more rows
# create a dataset where the crimes are only against lgbtqlgbtq <- hatecrimes |>pivot_longer(cols =4:44,names_to ="victim_cat",values_to ="crimecount") |>filter(victim_cat %in%c("anti-transgender", "anti-gayfemale", "anti-gendervictim_catendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual"))lgbtq
1. Write about the positive and negative aspects of this hatecrimes dataset.
One negative aspect about this data set is that the way it was gathered made it unreliable.
One positive aspect about this data set is the intentions behind it. It is a step in the right direction in terms of trying to learn more about where prejudice happens. If it was gathered properly then that data could have helped to come up with solution on how to address prejudice
2. List 2 different paths you would like to (hypothetically) study about this dataset.
One path I would like to have taken is figuring out what crime types were the highest for each victim. For example, which victim had the most property crimes against them.
Another path I would like to have taken is figuring out which years did crimes spike and figuring out if it correlated with any nation or world event
3. Describe 2 things you would do to follow up after seeing the output from the hatecrimes tutorial.
I would like to find out what the ages of the perpetrators are to see what age groups commit the most hate crimes
I would also like to find out if the counties with the highest rates are affluent counties or not to look for a pattern