Load library

suppressWarnings(
  library(tinytex)
)

Question T10 Page 307

A matrix \(A\) is idempotent if \(A^2 = A\). Show that the only possible eigenvalues of an idempotent matrix are \(\lambda = 0\) and \(\lambda = 1\).Then give and example of a matrix that is idempotent and has both of these two values as eigenvalues.

Let \(\lambda\) be an eigenvalue of an idempotent matrix \(A\). Therefore there is an eigenvector \(x\) such that \(Ax = \lambda x\). So \[ \begin{aligned} Ax &= A^2x = \lambda x\\ &= A(Ax)\\ &= A(\lambda x)\rightarrow x\:eigenvector\:of\:A\\ &= \lambda(Ax)\rightarrow scalar\:matrix\:multiplication\\ &= \lambda(\lambda x)\rightarrow x\:eigenvector\:of\:A\\ &= \lambda^2x = \lambda x\\ \end{aligned} \]

We have just shown \(\lambda x = \lambda^2x\) Hence; \[ \begin{aligned} \lambda^2x - \lambda x &= 0\\ (\lambda^2 - \lambda)x &= 0\rightarrow distribution\:property\\ \lambda(\lambda - 1)x &= 0 \end{aligned} \]

\(x\) is an eigenvector and thus a nonzero vector. Therefore the solution of the above equation and subsequently the eigenvalues of \(A\), are \(1\) and \(0\).

For example let \(A = \begin{bmatrix}1 & 0 \\0 & 0 \end{bmatrix}\) \[ \begin{aligned} A^2 &= \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix}\\ &=\begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} = A \end{aligned} \] Thus \(A\) is idempotent For the eigenvalues of \(A\): \[ \begin{aligned} \det(A - \lambda I) &= 0\\ \det( \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} - \lambda\begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} ) &= 0\\ \det( \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\0 & \lambda \end{bmatrix} ) &= 0\\ \begin{bmatrix} 1 - \lambda & 0\\0 & - \lambda \end{bmatrix} ) &= 0\\ -\lambda(1-\lambda) & = 0 \end{aligned} \] The solution of the above equation and thus the eigenvalues of \(A\) are \(1\) and \(0\). Therefore for idempotent matrix \(A\) the eigenvalues are; \(\lambda = 1\) and = 0$.