EE.C22

Without using a Calculator, find the eigenvalues of the matrix B

Let \(B\) be a \(2 \times 2\) matrix:

\[ B = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \]

The characteristic polynomial \[p(\lambda)\] is given by: \[ p(\lambda) = \det(B - \lambda I) \]

Now calculate \[(λI)\] where I is the identity matrix

\[ \lambda I = \begin{bmatrix} 2-\lambda & -1 \\ 1 & 1-\lambda \end{bmatrix} \]

Substitute the values into the determinant:

\[ p(\lambda) = \det\left(\begin{bmatrix} 2-\lambda & -1 \\ 1 & 1-\lambda \end{bmatrix}\right) \]

Expand the determinant:

\[ p(\lambda) = (2 - \lambda)(1 - \lambda) + 1\]

which gives the roots of this polynomial equation which are the eigenvalues

\[ \lambda = 1 \] \[ \lambda = -3 \]