str(tee)
num [1:15] 1 1 1 2 2 3 4 5 5 6 ...
# compute the SDR
sdr_a <- sd(tee) - (length(at1) / length(tee) * sd(at1) + length(at2) / length(tee) * sd(at2))
sdr_b <- sd(tee) - (length(bt1) / length(tee) * sd(bt1) + length(bt2) / length(tee) * sd(bt2))
#these values provide some indication of how well the main signal (tee) stands out from the #variations present in its sub-sets (at1, at2, bt1, bt2). Higher values of sdr_a and sdr_b #would suggest stronger signals relative to the sub-sets' noise.
sdr_b
[1] 1.392751
# examine the wine data
str(wine)
'data.frame': 4898 obs. of 12 variables:
$ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...
$ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38 0.16 0.37 ...
$ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28 0.3 0.33 ...
$ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...
$ chlorides : num 0.039 0.044 0.034 0.036 0.041 0.037 0.049 0.043 0.043 0.027 ...
$ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...
$ total.sulfur.dioxide: num 62 113 123 74 119 95 152 67 90 130 ...
$ density : num 0.993 0.999 0.995 0.991 0.993 ...
$ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21 2.88 3.28 ...
$ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47 0.47 0.39 ...
$ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...
$ quality : int 5 6 6 4 6 6 6 6 6 7 ...
# summary statistics of the wine data
summary(wine)
fixed.acidity volatile.acidity citric.acid residual.sugar
Min. : 3.800 Min. :0.0800 Min. :0.0000 Min. : 0.600
1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2700 1st Qu.: 1.700
Median : 6.800 Median :0.2600 Median :0.3200 Median : 5.200
Mean : 6.855 Mean :0.2782 Mean :0.3342 Mean : 6.391
3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3900 3rd Qu.: 9.900
Max. :14.200 Max. :1.1000 Max. :1.6600 Max. :65.800
chlorides free.sulfur.dioxide total.sulfur.dioxide density
Min. :0.00900 Min. : 2.00 Min. : 9.0 Min. :0.9871
1st Qu.:0.03600 1st Qu.: 23.00 1st Qu.:108.0 1st Qu.:0.9917
Median :0.04300 Median : 34.00 Median :134.0 Median :0.9937
Mean :0.04577 Mean : 35.31 Mean :138.4 Mean :0.9940
3rd Qu.:0.05000 3rd Qu.: 46.00 3rd Qu.:167.0 3rd Qu.:0.9961
Max. :0.34600 Max. :289.00 Max. :440.0 Max. :1.0390
pH sulphates alcohol quality
Min. :2.720 Min. :0.2200 Min. : 8.00 Min. :3.000
1st Qu.:3.090 1st Qu.:0.4100 1st Qu.: 9.50 1st Qu.:5.000
Median :3.180 Median :0.4700 Median :10.40 Median :6.000
Mean :3.188 Mean :0.4898 Mean :10.51 Mean :5.878
3rd Qu.:3.280 3rd Qu.:0.5500 3rd Qu.:11.40 3rd Qu.:6.000
Max. :3.820 Max. :1.0800 Max. :14.20 Max. :9.000
# get basic information about the tree
m.rpart
n= 3750
node), split, n, deviance, yval
* denotes terminal node
1) root 3750 2945.53200 5.870933
2) alcohol< 10.85 2372 1418.86100 5.604975
4) volatile.acidity>=0.2275 1611 821.30730 5.432030
8) volatile.acidity>=0.3025 688 278.97670 5.255814 *
9) volatile.acidity< 0.3025 923 505.04230 5.563380 *
5) volatile.acidity< 0.2275 761 447.36400 5.971091 *
3) alcohol>=10.85 1378 1070.08200 6.328737
6) free.sulfur.dioxide< 10.5 84 95.55952 5.369048 *
7) free.sulfur.dioxide>=10.5 1294 892.13600 6.391036
14) alcohol< 11.76667 629 430.11130 6.173291
28) volatile.acidity>=0.465 11 10.72727 4.545455 *
29) volatile.acidity< 0.465 618 389.71680 6.202265 *
15) alcohol>=11.76667 665 403.99400 6.596992 *
# get more detailed information about the tree
summary(m.rpart)
Call:
rpart(formula = quality ~ ., data = wine_train)
n= 3750
CP nsplit rel error xerror xstd
1 0.15501053 0 1.0000000 1.0004448 0.02445491
2 0.05098911 1 0.8449895 0.8458755 0.02333581
3 0.02796998 2 0.7940004 0.8030028 0.02263065
4 0.01970128 3 0.7660304 0.7784569 0.02144450
5 0.01265926 4 0.7463291 0.7590487 0.02066347
6 0.01007193 5 0.7336698 0.7483036 0.02055937
7 0.01000000 6 0.7235979 0.7480771 0.02052733
Variable importance
alcohol density volatile.acidity chlorides
34 21 15 11
total.sulfur.dioxide free.sulfur.dioxide residual.sugar sulphates
7 6 3 1
citric.acid
1
Node number 1: 3750 observations, complexity param=0.1550105
mean=5.870933, MSE=0.7854751
left son=2 (2372 obs) right son=3 (1378 obs)
Primary splits:
alcohol < 10.85 to the left, improve=0.15501050, (0 missing)
density < 0.992035 to the right, improve=0.10915940, (0 missing)
chlorides < 0.0395 to the right, improve=0.07682258, (0 missing)
total.sulfur.dioxide < 158.5 to the right, improve=0.04089663, (0 missing)
citric.acid < 0.235 to the left, improve=0.03636458, (0 missing)
Surrogate splits:
density < 0.991995 to the right, agree=0.869, adj=0.644, (0 split)
chlorides < 0.0375 to the right, agree=0.757, adj=0.339, (0 split)
total.sulfur.dioxide < 103.5 to the right, agree=0.690, adj=0.155, (0 split)
residual.sugar < 5.375 to the right, agree=0.667, adj=0.094, (0 split)
sulphates < 0.345 to the right, agree=0.647, adj=0.038, (0 split)
Node number 2: 2372 observations, complexity param=0.05098911
mean=5.604975, MSE=0.5981709
left son=4 (1611 obs) right son=5 (761 obs)
Primary splits:
volatile.acidity < 0.2275 to the right, improve=0.10585250, (0 missing)
free.sulfur.dioxide < 13.5 to the left, improve=0.03390500, (0 missing)
citric.acid < 0.235 to the left, improve=0.03204075, (0 missing)
alcohol < 10.11667 to the left, improve=0.03136524, (0 missing)
chlorides < 0.0585 to the right, improve=0.01633599, (0 missing)
Surrogate splits:
pH < 3.485 to the left, agree=0.694, adj=0.047, (0 split)
sulphates < 0.755 to the left, agree=0.685, adj=0.020, (0 split)
total.sulfur.dioxide < 105.5 to the right, agree=0.683, adj=0.011, (0 split)
residual.sugar < 0.75 to the right, agree=0.681, adj=0.007, (0 split)
chlorides < 0.0285 to the right, agree=0.680, adj=0.003, (0 split)
Node number 3: 1378 observations, complexity param=0.02796998
mean=6.328737, MSE=0.7765472
left son=6 (84 obs) right son=7 (1294 obs)
Primary splits:
free.sulfur.dioxide < 10.5 to the left, improve=0.07699080, (0 missing)
alcohol < 11.76667 to the left, improve=0.06210660, (0 missing)
total.sulfur.dioxide < 67.5 to the left, improve=0.04438619, (0 missing)
residual.sugar < 1.375 to the left, improve=0.02905351, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02613259, (0 missing)
Surrogate splits:
total.sulfur.dioxide < 53.5 to the left, agree=0.952, adj=0.214, (0 split)
volatile.acidity < 0.875 to the right, agree=0.940, adj=0.024, (0 split)
Node number 4: 1611 observations, complexity param=0.01265926
mean=5.43203, MSE=0.5098121
left son=8 (688 obs) right son=9 (923 obs)
Primary splits:
volatile.acidity < 0.3025 to the right, improve=0.04540111, (0 missing)
alcohol < 10.05 to the left, improve=0.03874403, (0 missing)
free.sulfur.dioxide < 13.5 to the left, improve=0.03338886, (0 missing)
chlorides < 0.0495 to the right, improve=0.02574623, (0 missing)
citric.acid < 0.195 to the left, improve=0.02327981, (0 missing)
Surrogate splits:
citric.acid < 0.215 to the left, agree=0.633, adj=0.141, (0 split)
free.sulfur.dioxide < 20.5 to the left, agree=0.600, adj=0.063, (0 split)
chlorides < 0.0595 to the right, agree=0.593, adj=0.047, (0 split)
residual.sugar < 1.15 to the left, agree=0.583, adj=0.023, (0 split)
total.sulfur.dioxide < 219.25 to the right, agree=0.582, adj=0.022, (0 split)
Node number 5: 761 observations
mean=5.971091, MSE=0.5878633
Node number 6: 84 observations
mean=5.369048, MSE=1.137613
Node number 7: 1294 observations, complexity param=0.01970128
mean=6.391036, MSE=0.6894405
left son=14 (629 obs) right son=15 (665 obs)
Primary splits:
alcohol < 11.76667 to the left, improve=0.06504696, (0 missing)
chlorides < 0.0395 to the right, improve=0.02758705, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02750932, (0 missing)
pH < 3.055 to the left, improve=0.02307356, (0 missing)
total.sulfur.dioxide < 191.5 to the right, improve=0.02186818, (0 missing)
Surrogate splits:
density < 0.990885 to the right, agree=0.720, adj=0.424, (0 split)
volatile.acidity < 0.2675 to the left, agree=0.637, adj=0.253, (0 split)
chlorides < 0.0365 to the right, agree=0.630, adj=0.238, (0 split)
residual.sugar < 1.475 to the left, agree=0.575, adj=0.126, (0 split)
total.sulfur.dioxide < 128.5 to the right, agree=0.574, adj=0.124, (0 split)
Node number 8: 688 observations
mean=5.255814, MSE=0.4054895
Node number 9: 923 observations
mean=5.56338, MSE=0.5471747
Node number 14: 629 observations, complexity param=0.01007193
mean=6.173291, MSE=0.6838017
left son=28 (11 obs) right son=29 (618 obs)
Primary splits:
volatile.acidity < 0.465 to the right, improve=0.06897561, (0 missing)
total.sulfur.dioxide < 200 to the right, improve=0.04223066, (0 missing)
residual.sugar < 0.975 to the left, improve=0.03061714, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02978501, (0 missing)
sulphates < 0.575 to the left, improve=0.02165970, (0 missing)
Surrogate splits:
citric.acid < 0.045 to the left, agree=0.986, adj=0.182, (0 split)
total.sulfur.dioxide < 279.25 to the right, agree=0.986, adj=0.182, (0 split)
Node number 15: 665 observations
mean=6.596992, MSE=0.6075098
Node number 28: 11 observations
mean=4.545455, MSE=0.9752066
Node number 29: 618 observations
mean=6.202265, MSE=0.6306098
Variable Importance:
The most important variable for predicting wine quality is alcohol, followed by density, volatile acidity, and chlorides.
Tree Structure:
The tree starts by splitting the data based on alcohol content. Wines with alcohol < 10.85 are more likely to have lower quality (mean quality around 5.6). Wines with alcohol >= 10.85 are more likely to have higher quality (mean quality around 6.3). Further splits are made based on other variables like volatile acidity, free sulfur dioxide, and chlorides. Each terminal node represents a group of wines with similar characteristics and predicted quality.
install.packages("rpart.plot")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/Nicolas Bertuleit/AppData/Local/R/win-library/4.3’
(as ‘lib’ is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/rpart.plot_3.1.1.zip'
Content type 'application/zip' length 1035076 bytes (1010 KB)
downloaded 1010 KB
package ‘rpart.plot’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\Nicolas Bertuleit\AppData\Local\Temp\RtmpoxHspy\downloaded_packages
summary(wine_test$quality)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 5.000 6.000 5.901 6.000 9.000
# compare the correlation
cor(p.rpart, wine_test$quality)
[1] 0.5369525
# mean absolute error between predicted and actual values
MAE(p.rpart, wine_test$quality)
[1] 0.5872652
MAE(5.87, wine_test$quality)
[1] 0.6722474
install.packages("plyr")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/Nicolas Bertuleit/AppData/Local/R/win-library/4.3’
(as ‘lib’ is unspecified)
also installing the dependency ‘Rcpp’
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/Rcpp_1.0.12.zip'
Content type 'application/zip' length 2877743 bytes (2.7 MB)
downloaded 2.7 MB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/plyr_1.8.9.zip'
Content type 'application/zip' length 1164430 bytes (1.1 MB)
downloaded 1.1 MB
package ‘Rcpp’ successfully unpacked and MD5 sums checked
package ‘plyr’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\Nicolas Bertuleit\AppData\Local\Temp\RtmpoxHspy\downloaded_packages
install.packages("plyr")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/Nicolas Bertuleit/AppData/Local/R/win-library/4.3’
(as ‘lib’ is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/plyr_1.8.9.zip'
Content type 'application/zip' length 1164430 bytes (1.1 MB)
downloaded 1.1 MB
package ‘plyr’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\Nicolas Bertuleit\AppData\Local\Temp\RtmpoxHspy\downloaded_packages
install.packages("Cubist")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/Nicolas Bertuleit/AppData/Local/R/win-library/4.3’
(as ‘lib’ is unspecified)
also installing the dependencies ‘cli’, ‘glue’, ‘lifecycle’, ‘magrittr’, ‘rlang’, ‘stringi’, ‘vctrs’, ‘stringr’, ‘reshape2’
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/cli_3.6.2.zip'
Content type 'application/zip' length 1340597 bytes (1.3 MB)
downloaded 1.3 MB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/glue_1.7.0.zip'
Content type 'application/zip' length 161427 bytes (157 KB)
downloaded 157 KB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/lifecycle_1.0.4.zip'
Content type 'application/zip' length 139696 bytes (136 KB)
downloaded 136 KB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/magrittr_2.0.3.zip'
Content type 'application/zip' length 226709 bytes (221 KB)
downloaded 221 KB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/rlang_1.1.3.zip'
Content type 'application/zip' length 1574692 bytes (1.5 MB)
downloaded 1.5 MB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/stringi_1.8.3.zip'
Content type 'application/zip' length 14998651 bytes (14.3 MB)
downloaded 14.3 MB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/vctrs_0.6.5.zip'
Content type 'application/zip' length 1334496 bytes (1.3 MB)
downloaded 1.3 MB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/stringr_1.5.1.zip'
Content type 'application/zip' length 319279 bytes (311 KB)
downloaded 311 KB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/reshape2_1.4.4.zip'
Content type 'application/zip' length 455748 bytes (445 KB)
downloaded 445 KB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/Cubist_0.4.2.1.zip'
Content type 'application/zip' length 889288 bytes (868 KB)
downloaded 868 KB
package ‘cli’ successfully unpacked and MD5 sums checked
package ‘glue’ successfully unpacked and MD5 sums checked
package ‘lifecycle’ successfully unpacked and MD5 sums checked
package ‘magrittr’ successfully unpacked and MD5 sums checked
package ‘rlang’ successfully unpacked and MD5 sums checked
package ‘stringi’ successfully unpacked and MD5 sums checked
package ‘vctrs’ successfully unpacked and MD5 sums checked
package ‘stringr’ successfully unpacked and MD5 sums checked
package ‘reshape2’ successfully unpacked and MD5 sums checked
package ‘Cubist’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\Nicolas Bertuleit\AppData\Local\Temp\RtmpoxHspy\downloaded_packages
# train a Cubist Model Tree
library(Cubist)
Loading required package: lattice
# display basic information about the model tree
m.cubist
Call:
cubist.default(x = wine_train[-12], y = wine_train$quality)
Number of samples: 3750
Number of predictors: 11
Number of committees: 1
Number of rules: 25
# display the tree itself
summary(m.cubist)
Call:
cubist.default(x = wine_train[-12], y = wine_train$quality)
Cubist [Release 2.07 GPL Edition] Sat Feb 10 17:23:54 2024
---------------------------------
Target attribute `outcome'
Read 3750 cases (12 attributes) from undefined.data
Model:
Rule 1: [21 cases, mean 5.0, range 4 to 6, est err 0.5]
if
free.sulfur.dioxide > 30
total.sulfur.dioxide > 195
total.sulfur.dioxide <= 235
sulphates > 0.64
alcohol > 9.1
then
outcome = 573.6 + 0.0478 total.sulfur.dioxide - 573 density
- 0.788 alcohol + 0.186 residual.sugar - 4.73 volatile.acidity
Rule 2: [28 cases, mean 5.0, range 4 to 8, est err 0.7]
if
volatile.acidity > 0.31
citric.acid <= 0.36
residual.sugar <= 1.45
total.sulfur.dioxide <= 97
alcohol > 9.1
then
outcome = 168.2 + 4.75 citric.acid + 0.0123 total.sulfur.dioxide
- 170 density + 0.057 residual.sugar - 6.4 chlorides + 0.84 pH
+ 0.14 fixed.acidity
Rule 3: [171 cases, mean 5.1, range 3 to 6, est err 0.3]
if
volatile.acidity > 0.205
chlorides <= 0.054
density <= 0.99839
alcohol <= 9.1
then
outcome = 147.4 - 144 density + 0.08 residual.sugar + 0.117 alcohol
- 0.87 volatile.acidity - 0.09 pH - 0.01 fixed.acidity
Rule 4: [37 cases, mean 5.3, range 3 to 6, est err 0.5]
if
free.sulfur.dioxide > 30
total.sulfur.dioxide > 235
alcohol > 9.1
then
outcome = 19.5 - 0.013 total.sulfur.dioxide - 2.7 volatile.acidity
- 10 density + 0.005 residual.sugar + 0.008 alcohol
Rule 5: [64 cases, mean 5.3, range 5 to 6, est err 0.3]
if
volatile.acidity > 0.205
residual.sugar > 17.85
then
outcome = -23.6 + 0.233 alcohol - 5.2 chlorides - 0.75 citric.acid
+ 28 density - 0.81 volatile.acidity - 0.19 pH
- 0.002 residual.sugar
Rule 6: [56 cases, mean 5.3, range 4 to 7, est err 0.6]
if
fixed.acidity <= 7.1
volatile.acidity > 0.205
chlorides > 0.054
density <= 0.99839
alcohol <= 9.1
then
outcome = 40.6 + 0.374 alcohol - 1.62 volatile.acidity
+ 0.026 residual.sugar - 38 density - 0.21 pH
- 0.01 fixed.acidity
Rule 7: [337 cases, mean 5.3, range 3 to 7, est err 0.4]
if
fixed.acidity <= 7.8
volatile.acidity > 0.305
chlorides <= 0.09
free.sulfur.dioxide <= 82.5
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol <= 10.4
then
outcome = -32.1 + 0.233 alcohol - 9.7 chlorides
+ 0.0038 total.sulfur.dioxide - 0.0081 free.sulfur.dioxide
+ 35 density + 0.81 volatile.acidity
Rule 8: [30 cases, mean 5.5, range 3 to 7, est err 0.5]
if
fixed.acidity > 7.1
volatile.acidity > 0.205
chlorides > 0.054
density <= 0.99839
alcohol <= 9.1
then
outcome = 244 - 1.56 fixed.acidity - 228 density
+ 0.0252 free.sulfur.dioxide - 7.3 chlorides
- 0.19 volatile.acidity + 0.003 residual.sugar
Rule 9: [98 cases, mean 5.5, range 4 to 8, est err 0.5]
if
volatile.acidity > 0.155
chlorides > 0.09
total.sulfur.dioxide <= 235
sulphates <= 0.64
then
outcome = 55.9 - 3.85 volatile.acidity - 52 density
+ 0.023 residual.sugar + 0.092 alcohol + 0.35 pH
+ 0.05 fixed.acidity + 0.3 sulphates
+ 0.001 free.sulfur.dioxide
Rule 10: [446 cases, mean 5.6, range 4 to 8, est err 0.5]
if
fixed.acidity <= 7.8
volatile.acidity > 0.155
volatile.acidity <= 0.305
chlorides <= 0.09
free.sulfur.dioxide <= 82.5
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 9.1
alcohol <= 10.4
then
outcome = 15.1 + 0.35 alcohol - 3.09 volatile.acidity - 14.7 chlorides
+ 1.16 sulphates - 0.0022 total.sulfur.dioxide
+ 0.11 fixed.acidity + 0.45 pH + 0.5 citric.acid - 14 density
+ 0.006 residual.sugar
Rule 11: [31 cases, mean 5.6, range 3 to 8, est err 0.8]
if
volatile.acidity > 0.31
citric.acid > 0.36
free.sulfur.dioxide <= 30
total.sulfur.dioxide <= 97
then
outcome = 3.2 + 0.0584 total.sulfur.dioxide + 7.77 volatile.acidity
+ 0.328 alcohol - 9 density + 0.003 residual.sugar
Rule 12: [20 cases, mean 5.7, range 3 to 8, est err 0.9]
if
free.sulfur.dioxide > 82.5
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 9.1
then
outcome = -8.9 + 109.3 chlorides + 0.948 alcohol
Rule 13: [331 cases, mean 5.8, range 4 to 8, est err 0.5]
if
volatile.acidity > 0.31
free.sulfur.dioxide <= 30
total.sulfur.dioxide > 97
alcohol > 9.1
then
outcome = 89.8 + 0.0234 free.sulfur.dioxide + 0.324 alcohol
+ 0.07 residual.sugar - 90 density - 1.47 volatile.acidity
+ 0.48 pH
Rule 14: [116 cases, mean 5.8, range 3 to 8, est err 0.6]
if
fixed.acidity > 7.8
volatile.acidity > 0.155
free.sulfur.dioxide > 30
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 9.1
then
outcome = 6 + 0.346 alcohol - 0.41 fixed.acidity - 1.69 volatile.acidity
- 2.9 chlorides + 0.19 sulphates + 0.07 pH
Rule 15: [115 cases, mean 5.8, range 4 to 7, est err 0.5]
if
volatile.acidity > 0.205
residual.sugar <= 17.85
density > 0.99839
alcohol <= 9.1
then
outcome = -110.2 + 120 density - 3.46 volatile.acidity - 0.97 pH
- 0.022 residual.sugar + 0.088 alcohol - 0.6 citric.acid
- 0.01 fixed.acidity
Rule 16: [986 cases, mean 5.9, range 3 to 9, est err 0.6]
if
volatile.acidity <= 0.31
free.sulfur.dioxide <= 30
alcohol > 9.1
then
outcome = 280.4 - 282 density + 0.128 residual.sugar
+ 0.0264 free.sulfur.dioxide - 3 volatile.acidity + 1.2 pH
+ 0.65 citric.acid + 0.09 fixed.acidity + 0.56 sulphates
+ 0.015 alcohol
Rule 17: [49 cases, mean 6.0, range 5 to 8, est err 0.5]
if
volatile.acidity > 0.155
residual.sugar > 8.8
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH <= 3.26
alcohol > 9.1
then
outcome = 173.5 - 169 density + 0.055 alcohol + 0.38 sulphates
+ 0.002 residual.sugar
Rule 18: [114 cases, mean 6.1, range 3 to 9, est err 0.6]
if
volatile.acidity > 0.31
citric.acid <= 0.36
residual.sugar > 1.45
total.sulfur.dioxide <= 97
alcohol > 9.1
then
outcome = 302.3 - 305 density + 0.0128 total.sulfur.dioxide
+ 0.096 residual.sugar + 1.94 citric.acid + 1.05 pH
+ 0.17 fixed.acidity - 6.7 chlorides
+ 0.0022 free.sulfur.dioxide - 0.21 volatile.acidity
+ 0.013 alcohol + 0.09 sulphates
Rule 19: [145 cases, mean 6.1, range 5 to 8, est err 0.6]
if
volatile.acidity > 0.155
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 195
sulphates > 0.64
then
outcome = 206 - 209 density + 0.069 residual.sugar + 0.38 fixed.acidity
+ 2.79 sulphates + 0.0155 free.sulfur.dioxide
- 0.0051 total.sulfur.dioxide - 1.71 citric.acid + 1.04 pH
Rule 20: [555 cases, mean 6.1, range 3 to 9, est err 0.6]
if
total.sulfur.dioxide > 130
total.sulfur.dioxide <= 235
sulphates <= 0.64
alcohol > 10.4
then
outcome = 108 + 0.276 alcohol - 109 density + 0.05 residual.sugar
+ 0.77 pH - 1.02 volatile.acidity - 4.2 chlorides
+ 0.78 sulphates + 0.08 fixed.acidity
+ 0.0016 free.sulfur.dioxide - 0.0003 total.sulfur.dioxide
Rule 21: [73 cases, mean 6.2, range 4 to 8, est err 0.4]
if
volatile.acidity > 0.155
citric.acid <= 0.28
residual.sugar <= 8.8
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH <= 3.26
sulphates <= 0.64
alcohol > 9.1
then
outcome = 4.2 + 0.147 residual.sugar + 0.47 alcohol + 3.75 sulphates
- 2.5 volatile.acidity - 5 density
Rule 22: [244 cases, mean 6.3, range 4 to 8, est err 0.6]
if
citric.acid > 0.28
residual.sugar <= 8.8
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH <= 3.26
then
outcome = 40.1 + 0.278 alcohol + 1.3 sulphates - 39 density
+ 0.017 residual.sugar + 0.001 total.sulfur.dioxide + 0.17 pH
+ 0.03 fixed.acidity
Rule 23: [106 cases, mean 6.3, range 4 to 8, est err 0.6]
if
volatile.acidity <= 0.155
free.sulfur.dioxide > 30
then
outcome = 139.1 - 138 density + 0.058 residual.sugar + 0.71 pH
+ 0.92 sulphates + 0.11 fixed.acidity - 0.73 volatile.acidity
+ 0.055 alcohol - 0.0012 total.sulfur.dioxide
+ 0.0007 free.sulfur.dioxide
Rule 24: [137 cases, mean 6.5, range 4 to 9, est err 0.6]
if
volatile.acidity > 0.155
free.sulfur.dioxide > 30
total.sulfur.dioxide <= 130
pH > 3.26
sulphates <= 0.64
alcohol > 9.1
then
outcome = 114.2 + 0.0142 total.sulfur.dioxide - 107 density
- 11.8 chlorides - 1.57 pH + 0.124 alcohol + 1.21 sulphates
+ 1.16 volatile.acidity + 0.021 residual.sugar
+ 0.04 fixed.acidity
Rule 25: [92 cases, mean 6.5, range 4 to 8, est err 0.6]
if
volatile.acidity <= 0.205
alcohol <= 9.1
then
outcome = -200.7 + 210 density + 5.88 volatile.acidity + 23.9 chlorides
- 2.83 citric.acid - 1.17 pH
Evaluation on training data (3750 cases):
Average |error| 0.5
Relative |error| 0.67
Correlation coefficient 0.66
Attribute usage:
Conds Model
84% 93% alcohol
80% 89% volatile.acidity
70% 61% free.sulfur.dioxide
63% 50% total.sulfur.dioxide
44% 70% sulphates
26% 44% chlorides
22% 76% fixed.acidity
16% 87% residual.sugar
11% 86% pH
11% 45% citric.acid
8% 97% density
Time: 0.2 secs
# summary statistics about the predictions
summary(p.cubist)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.677 5.416 5.906 5.848 6.238 7.393
# correlation between the predicted and true values
cor(p.cubist, wine_test$quality)
[1] 0.6201015
# mean absolute error of predicted and true values
# (uses a custom function defined above)
MAE(wine_test$quality, p.cubist)
[1] 0.5339725