it will srore a value in a variable
x<-c(1,2,3)
a<-2 a
x<-c(5:10)
x<-c(1,2,3)
x<-c(1:20)
x
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
>install packages("ggplot2")
this
there
are
x<-c(1,2,3,4:10,NA)
help(sd)
## starting httpd help server ... done
args(sd)
## function (x, na.rm = FALSE)
## NULL
example(sd)
##
## sd> sd(1:2) ^ 2
## [1] 0.5
x<-c(4,7,3,2,8)
x
## [1] 4 7 3 2 8
y<-x+2
y
## [1] 6 9 5 4 10
mean(y)
## [1] 6.8
sd(y)
## [1] 2.588436
z<-c(2,3)
z
## [1] 2 3
e<-x+z
## Warning in x + z: longer object length is not a multiple of shorter object
## length
e
## [1] 6 10 5 5 10
character numaric interaction logical complex
R Attributes names dimension class length
creating vector
missing object
y<-c(1.7,"a")
numaric and integer Explicit coretion
matrices coloum bind row bind function
create a /list whose first element is 2-element set of names say “atanu”and“karam”,second elements is aset of numers like 2,3,5,19,2,7,5,5. check the class of second element of the list. print the 4th element of the 2nd element of the list. change the 1st element of the list as factor. find out the frequncy of each element of the 2nd element of the list
assign<-list(c("Atanu","Karam"),c(2,3,5,19,2,7,5,5))
class(assign[[2]])
## [1] "numeric"
assign[[c(2,4)]]
## [1] 19
as.factor(assign [[1]])
## [1] Atanu Karam
## Levels: Atanu Karam
x<-c(1,2,3,NA,3,NaN)
```r
1)create one 5-d vector of values 4,7,3,2,5
x<-c(4,7,3,2,5)
x
## [1] 4 7 3 2 5
2)add 2 to x..assigns the value to y
y<-x+2
y
## [1] 6 9 5 4 7
3)Find the mean sd of y
mean(y)
## [1] 6.2
sd(y)
## [1] 1.923538
4)create whether variable z as combination of 2,3.
z<-c(2,3)
z
## [1] 2 3
5)Add x and z ```
x+z
## Warning in x + z: longer object length is not a multiple of shorter object
## length
## [1] 6 10 5 5 7
—-atomic character numeric(real numbers) integer complex logical(T/F)
x<-1
class(x) # shows data type
## [1] "numeric"
x<-1L
class(x)
## [1] "integer"
class(x)
## [1] "integer"
x<-as.character
class(x)
## [1] "function"
1/0
## [1] Inf
x<- c(0.5,0.6)
x<-c(TRUE,FALSE)
x<-9:23
x<-c(1:20)
length(x)
## [1] 20
x<-c(1:20,"karam")
length(x)
## [1] 21
print(x)
## [1] "1" "2" "3" "4" "5" "6" "7" "8"
## [9] "9" "10" "11" "12" "13" "14" "15" "16"
## [17] "17" "18" "19" "20" "karam"
x<-c(0.1)
m<- matrix(1:20,nrow=2)
s<-matrix(1:20,2,byrow = T)
dim(s)
## [1] 2 10
x<-1:10
dim(x)=c(2,5)
x<-1:6
y<-5:10
cbind(x,y) # coulmn binding
## x y
## [1,] 1 5
## [2,] 2 6
## [3,] 3 7
## [4,] 4 8
## [5,] 5 9
## [6,] 6 10
rbind(x,y) # row binding
## [,1] [,2] [,3] [,4] [,5] [,6]
## x 1 2 3 4 5 6
## y 5 6 7 8 9 10
x<-list(c(1,2,3),c("jagadish","karam"))
x
## [[1]]
## [1] 1 2 3
##
## [[2]]
## [1] "jagadish" "karam"
x[[c(1,2)]]
## [1] 2
x[[c(2,1)]]
## [1] "jagadish"
x<-factor(c("yes","yes","no","yes"))
x
## [1] yes yes no yes
## Levels: no yes
class(x)
## [1] "factor"
y<- factor(x,exclude=NA)
table(x)
## x
## no yes
## 1 3
unclass(x)
## [1] 2 2 1 2
## attr(,"levels")
## [1] "no" "yes"
1) create a list whose first element is 2-element set of names say "Atanu", and "Karam"
, second element is a set of numbers like 2,3,5,19,2,7,5,5.
y<-list(a=c("Atanu","Karam"),b=c(2, 3,5,19,2,7,5,5) )
y
## $a
## [1] "Atanu" "Karam"
##
## $b
## [1] 2 3 5 19 2 7 5 5
2)Check the class of second elemnt of the list.?
class(y[[c(1,2)]])
## [1] "character"
3) print the 4 th element of the 2nd element of the list.?
y[[c(2,4)]]
## [1] 19
4)change the 1st element of the list as factor.
y<- as.factor (y[[1]])
y
## [1] Atanu Karam
## Levels: Atanu Karam
5)find out the frequency of each element of the 2nd element of the list.?
y[[c(2)]]
## [1] Karam
## Levels: Atanu Karam
x<-c(1,2,3,4,NA,1,NaN)
x
## [1] 1 2 3 4 NA 1 NaN
is.na(x) # checking NA is there r not
## [1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE
is.nan(x) #checking NaN is there r not
## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
import coloums 5&7
wine<-read.csv("C://jagadeesh")
View(wine)
colnames(Wine)<-c("Alcohol","Malic acid","Ash","Alcalinity of ash"," Magnesium","Total phenols","Flavanoids", "Nonflavanoid phenols","Proanthocyanins","Color intensity","Hue","OD280/OD315 of diluted", "wines")
``` col(iris) < - C(“sepal length in cm”,“sepal width in cm”, “petal length in cm”,“petal width in cm”,“Species”)
iris=subset(iris)
```r adult <- read.csv(“C:\Users\LOCALA~1\AppData\Local\Temp\RtmpmShtIW\data16581ca66a9b”, header=FALSE) View(adult) names(adult)<-c(“age”,“workclass”,“fnlwgt”, “education”,“educationnum”,“maritalstatus”, “occupation”,“relationship”,“race”,“sex”, “capitalgain”,“capitalloss”,“hoursperweek”, “nativecountry”,“Income”)
View(adult)
plot(cars) grid() lines(cars)
View(iris)
with(iris,plot(Petal.Length,Petal.Width,pch=as.integer(Species)))
f<-factor(iris$species)
legend(1.5,2.4,as.character(levels(f)),pch=1:length(levels(f)))
location<-c("AS","we","ER","QW")
treatment<-c("T1","T2","T3","T4")
outer(location,treatment,paste,sep=",") ## adding to rows
## [,1] [,2] [,3] [,4]
## [1,] "AS,T1" "AS,T2" "AS,T3" "AS,T4"
## [2,] "we,T1" "we,T2" "we,T3" "we,T4"
## [3,] "ER,T1" "ER,T2" "ER,T3" "ER,T4"
## [4,] "QW,T1" "QW,T2" "QW,T3" "QW,T4"
treatment<-c("1","2","3","4")
outer(location,treatment,paste,sep=",")
## [,1] [,2] [,3] [,4]
## [1,] "AS,1" "AS,2" "AS,3" "AS,4"
## [2,] "we,1" "we,2" "we,3" "we,4"
## [3,] "ER,1" "ER,2" "ER,3" "ER,4"
## [4,] "QW,1" "QW,2" "QW,3" "QW,4"
paste("sujith","sssss","eeeeee",sep=" ") ## combining with space
## [1] "sujith sssss eeeeee"
Sys.Date()
## [1] "2015-10-07"
class(Sys.Date())
## [1] "Date"
m<-"2015/10/06"
class(m)
## [1] "character"
date2<-as.Date(m,format="%Y/%m/%d")
class(date2)
## [1] "Date"
ISOdate(2015,8,06) ## change the date
## [1] "2015-08-06 12:00:00 GMT"
as.Date(ISOdate(2015,8,06)) ## convert chart to date
## [1] "2015-08-06"
class(as.Date(ISOdate(2015,8,06)))
## [1] "Date"
w<-as.Date(ISOdate(2015,8,06))
format(w,"%Y")
## [1] "2015"
class(format(w,"%Y"))
## [1] "character"
as.integer(format(w,"%Y"))
## [1] 2015
data() ## all dataset in R
View(cars)
plot(cars$speed,cars$dist)
plot(cars,main="scatterplot",xlab="speed",ylab="dist")
grid() ## gives lines inside the plot
lines(cars) ## gives line to the points
with(iris,plot(Petal.Length,Petal.Width,pch=as.integer(Species)))
pairs(iris) ## gives all
f<- factor(iris$Species)
legend(1.5,2.4,as.character(levels(f)),pch=1:length(levels(f)))
data(Cars93,package="MASS")
library(MASS)
View(Cars93)
coplot(Horsepower ~ MPG.city | Origin,data = Cars93)
k<-list(a=c(1,2,3,5),b=c("jagadeesh","karam","atanu"))