Loading in the libraries and setting the working directory

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tinytex)
  setwd("/Users/aashkanavale/Desktop/Montgomery College/MC Spring '24/DATA110/data sets")
  hatecrimes <- read_csv("hateCrimes2010.csv")
## Rows: 423 Columns: 44
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): County, Crime Type
## dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Cleaning up the data

names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ", "", names(hatecrimes))
head(hatecrimes)
## # A tibble: 6 × 44
##   county    year crimetype          `anti-male` `anti-female` `anti-transgender`
##   <chr>    <dbl> <chr>                    <dbl>         <dbl>              <dbl>
## 1 Albany    2016 Crimes Against Pe…           0             0                  0
## 2 Albany    2016 Property Crimes              0             0                  0
## 3 Allegany  2016 Property Crimes              0             0                  0
## 4 Bronx     2016 Crimes Against Pe…           0             0                  4
## 5 Bronx     2016 Property Crimes              0             0                  0
## 6 Broome    2016 Crimes Against Pe…           0             0                  0
## # ℹ 38 more variables: `anti-genderidentityexpression` <dbl>,
## #   `anti-age*` <dbl>, `anti-white` <dbl>, `anti-black` <dbl>,
## #   `anti-americanindian/alaskannative` <dbl>, `anti-asian` <dbl>,
## #   `anti-nativehawaiian/pacificislander` <dbl>,
## #   `anti-multi-racialgroups` <dbl>, `anti-otherrace` <dbl>,
## #   `anti-jewish` <dbl>, `anti-catholic` <dbl>, `anti-protestant` <dbl>,
## #   `anti-islamic(muslim)` <dbl>, `anti-multi-religiousgroups` <dbl>, …

Selecting only certain hate crimes

summary(hatecrimes)
##     county               year       crimetype           anti-male       
##  Length:423         Min.   :2010   Length:423         Min.   :0.000000  
##  Class :character   1st Qu.:2011   Class :character   1st Qu.:0.000000  
##  Mode  :character   Median :2013   Mode  :character   Median :0.000000  
##                     Mean   :2013                      Mean   :0.007092  
##                     3rd Qu.:2015                      3rd Qu.:0.000000  
##                     Max.   :2016                      Max.   :1.000000  
##   anti-female      anti-transgender  anti-genderidentityexpression
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000              
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000              
##  Median :0.00000   Median :0.00000   Median :0.00000              
##  Mean   :0.01655   Mean   :0.04728   Mean   :0.05674              
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000              
##  Max.   :1.00000   Max.   :5.00000   Max.   :3.00000              
##    anti-age*         anti-white        anti-black    
##  Min.   :0.00000   Min.   : 0.0000   Min.   : 0.000  
##  1st Qu.:0.00000   1st Qu.: 0.0000   1st Qu.: 0.000  
##  Median :0.00000   Median : 0.0000   Median : 1.000  
##  Mean   :0.05201   Mean   : 0.3357   Mean   : 1.761  
##  3rd Qu.:0.00000   3rd Qu.: 0.0000   3rd Qu.: 2.000  
##  Max.   :9.00000   Max.   :11.0000   Max.   :18.000  
##  anti-americanindian/alaskannative   anti-asian    
##  Min.   :0.000000                  Min.   :0.0000  
##  1st Qu.:0.000000                  1st Qu.:0.0000  
##  Median :0.000000                  Median :0.0000  
##  Mean   :0.007092                  Mean   :0.1773  
##  3rd Qu.:0.000000                  3rd Qu.:0.0000  
##  Max.   :1.000000                  Max.   :8.0000  
##  anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
##  Min.   :0                           Min.   :0.00000         Min.   :0     
##  1st Qu.:0                           1st Qu.:0.00000         1st Qu.:0     
##  Median :0                           Median :0.00000         Median :0     
##  Mean   :0                           Mean   :0.08511         Mean   :0     
##  3rd Qu.:0                           3rd Qu.:0.00000         3rd Qu.:0     
##  Max.   :0                           Max.   :3.00000         Max.   :0     
##   anti-jewish     anti-catholic     anti-protestant   anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.02364   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :1.00000   Max.   :10.0000     
##  anti-multi-religiousgroups anti-atheism/agnosticism
##  Min.   : 0.00000           Min.   :0               
##  1st Qu.: 0.00000           1st Qu.:0               
##  Median : 0.00000           Median :0               
##  Mean   : 0.07565           Mean   :0               
##  3rd Qu.: 0.00000           3rd Qu.:0               
##  Max.   :10.00000           Max.   :0               
##  anti-religiouspracticegenerally anti-otherreligion anti-buddhist
##  Min.   :0.000000                Min.   :0.000      Min.   :0    
##  1st Qu.:0.000000                1st Qu.:0.000      1st Qu.:0    
##  Median :0.000000                Median :0.000      Median :0    
##  Mean   :0.007092                Mean   :0.104      Mean   :0    
##  3rd Qu.:0.000000                3rd Qu.:0.000      3rd Qu.:0    
##  Max.   :2.000000                Max.   :4.000      Max.   :0    
##  anti-easternorthodox(greek,russian,etc.)   anti-hindu      
##  Min.   :0.000000                         Min.   :0.000000  
##  1st Qu.:0.000000                         1st Qu.:0.000000  
##  Median :0.000000                         Median :0.000000  
##  Mean   :0.002364                         Mean   :0.002364  
##  3rd Qu.:0.000000                         3rd Qu.:0.000000  
##  Max.   :1.000000                         Max.   :1.000000  
##  anti-jehovahswitness  anti-mormon anti-otherchristian   anti-sikh
##  Min.   :0            Min.   :0    Min.   :0.00000     Min.   :0  
##  1st Qu.:0            1st Qu.:0    1st Qu.:0.00000     1st Qu.:0  
##  Median :0            Median :0    Median :0.00000     Median :0  
##  Mean   :0            Mean   :0    Mean   :0.01655     Mean   :0  
##  3rd Qu.:0            3rd Qu.:0    3rd Qu.:0.00000     3rd Qu.:0  
##  Max.   :0            Max.   :0    Max.   :3.00000     Max.   :0  
##  anti-hispanic       anti-arab       anti-otherethnicity/nationalorigin
##  Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000                   
##  1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000                   
##  Median : 0.0000   Median :0.00000   Median : 0.0000                   
##  Mean   : 0.3735   Mean   :0.06619   Mean   : 0.2837                   
##  3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000                   
##  Max.   :17.0000   Max.   :2.00000   Max.   :19.0000                   
##  anti-non-hispanic*  anti-gaymale    anti-gayfemale   anti-gay(maleandfemale)
##  Min.   :0          Min.   : 0.000   Min.   :0.0000   Min.   :0.0000         
##  1st Qu.:0          1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.0000         
##  Median :0          Median : 0.000   Median :0.0000   Median :0.0000         
##  Mean   :0          Mean   : 1.499   Mean   :0.2411   Mean   :0.1017         
##  3rd Qu.:0          3rd Qu.: 1.000   3rd Qu.:0.0000   3rd Qu.:0.0000         
##  Max.   :0          Max.   :36.000   Max.   :8.0000   Max.   :4.0000         
##  anti-heterosexual  anti-bisexual      anti-physicaldisability
##  Min.   :0.000000   Min.   :0.000000   Min.   :0.00000        
##  1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.00000        
##  Median :0.000000   Median :0.000000   Median :0.00000        
##  Mean   :0.002364   Mean   :0.004728   Mean   :0.01182        
##  3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.00000        
##  Max.   :1.000000   Max.   :1.000000   Max.   :1.00000        
##  anti-mentaldisability totalincidents    totalvictims    totaloffenders  
##  Min.   :0.000000      Min.   :  1.00   Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:0.000000      1st Qu.:  1.00   1st Qu.:  1.00   1st Qu.:  1.00  
##  Median :0.000000      Median :  3.00   Median :  3.00   Median :  3.00  
##  Mean   :0.009456      Mean   : 10.09   Mean   : 10.48   Mean   : 11.77  
##  3rd Qu.:0.000000      3rd Qu.: 10.00   3rd Qu.: 10.00   3rd Qu.: 11.00  
##  Max.   :1.000000      Max.   :101.00   Max.   :106.00   Max.   :113.00

I decided to look at the top 10 hate-crimes with the largest amount of maximum numbers.

hatecrimes2 <- hatecrimes |>
  select(county, year, 'anti-jewish', 'anti-gaymale', 'anti-otherethnicity/nationalorigin', 'anti-black', 'anti-hispanic', 'anti-catholic', 'anti-white', 'anti-multi-religiousgroups') |>
  group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 × 10
## # Groups:   county, year [4]
##   county   year `anti-jewish` `anti-gaymale` anti-otherethnicity/…¹ `anti-black`
##   <chr>   <dbl>         <dbl>          <dbl>                  <dbl>        <dbl>
## 1 Albany   2016             0              1                      0            1
## 2 Albany   2016             0              0                      0            2
## 3 Allega…  2016             0              0                      0            1
## 4 Bronx    2016             0              8                      0            0
## 5 Bronx    2016             1              0                      0            0
## 6 Broome   2016             0              1                      0            1
## # ℹ abbreviated name: ¹​`anti-otherethnicity/nationalorigin`
## # ℹ 4 more variables: `anti-hispanic` <dbl>, `anti-catholic` <dbl>,
## #   `anti-white` <dbl>, `anti-multi-religiousgroups` <dbl>

Checking the dimensions and the summary to make sure there are no missing values

dim(hatecrimes2)
## [1] 423  10
# I currently have 10 variables with 423 rows.
summary(hatecrimes2)
##     county               year       anti-jewish      anti-gaymale   
##  Length:423         Min.   :2010   Min.   : 0.000   Min.   : 0.000  
##  Class :character   1st Qu.:2011   1st Qu.: 0.000   1st Qu.: 0.000  
##  Mode  :character   Median :2013   Median : 0.000   Median : 0.000  
##                     Mean   :2013   Mean   : 3.981   Mean   : 1.499  
##                     3rd Qu.:2015   3rd Qu.: 3.000   3rd Qu.: 1.000  
##                     Max.   :2016   Max.   :82.000   Max.   :36.000  
##  anti-otherethnicity/nationalorigin   anti-black     anti-hispanic    
##  Min.   : 0.0000                    Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.: 0.0000                    1st Qu.: 0.000   1st Qu.: 0.0000  
##  Median : 0.0000                    Median : 1.000   Median : 0.0000  
##  Mean   : 0.2837                    Mean   : 1.761   Mean   : 0.3735  
##  3rd Qu.: 0.0000                    3rd Qu.: 2.000   3rd Qu.: 0.0000  
##  Max.   :19.0000                    Max.   :18.000   Max.   :17.0000  
##  anti-catholic       anti-white      anti-multi-religiousgroups
##  Min.   : 0.0000   Min.   : 0.0000   Min.   : 0.00000          
##  1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.: 0.00000          
##  Median : 0.0000   Median : 0.0000   Median : 0.00000          
##  Mean   : 0.2695   Mean   : 0.3357   Mean   : 0.07565          
##  3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.: 0.00000          
##  Max.   :12.0000   Max.   :11.0000   Max.   :10.00000

Converting from wide to long format

hatelong <- hatecrimes2 |>
  pivot_longer(
  cols = 3:10,
  names_to = "victim_cat",
  values_to = "crimecount"
)
hatelong
## # A tibble: 3,384 × 4
## # Groups:   county, year [277]
##    county  year victim_cat                         crimecount
##    <chr>  <dbl> <chr>                                   <dbl>
##  1 Albany  2016 anti-jewish                                 0
##  2 Albany  2016 anti-gaymale                                1
##  3 Albany  2016 anti-otherethnicity/nationalorigin          0
##  4 Albany  2016 anti-black                                  1
##  5 Albany  2016 anti-hispanic                               0
##  6 Albany  2016 anti-catholic                               0
##  7 Albany  2016 anti-white                                  0
##  8 Albany  2016 anti-multi-religiousgroups                  0
##  9 Albany  2016 anti-jewish                                 0
## 10 Albany  2016 anti-gaymale                                0
## # ℹ 3,374 more rows

Using the long format to create a facet plot

hatecrimeplot <- hatelong |>
  ggplot(aes(year, crimecount)) + 
  geom_point() +
  aes(color = victim_cat) +
  facet_wrap(~ victim_cat)
hatecrimeplot

Looking deeper into crimes I took the top 3 hate-crimes that looked significantly different than the rest.

hatenew <- hatelong |>
  filter(victim_cat %in% c("anti-jewish", "anti-gaymale", "anti-black")) |>
  group_by(year, county) |>
  arrange(desc(crimecount))
hatenew
## # A tibble: 1,269 × 4
## # Groups:   year, county [277]
##    county   year victim_cat  crimecount
##    <chr>   <dbl> <chr>            <dbl>
##  1 Kings    2012 anti-jewish         82
##  2 Kings    2016 anti-jewish         51
##  3 Suffolk  2014 anti-jewish         48
##  4 Suffolk  2012 anti-jewish         48
##  5 Kings    2011 anti-jewish         44
##  6 Kings    2013 anti-jewish         41
##  7 Kings    2010 anti-jewish         39
##  8 Nassau   2011 anti-jewish         38
##  9 Suffolk  2013 anti-jewish         37
## 10 Nassau   2016 anti-jewish         36
## # ℹ 1,259 more rows

Plotting these three hate-crimes together

hcplot2 <- hatenew |>
  ggplot() + 
  geom_bar(aes(x = year, y = crimecount, fill = victim_cat),
           position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       x = "Year",
       title = "Hate Crime Types in Counties in NY Between 2010-2016",
       caption = "Source - NY State Division of Criminal Justice Services")
hcplot2

Plotting by county

hcplot3 <- hatenew |>
  ggplot() +
  geom_bar(aes(x = county, y = crimecount, fill = victim_cat), 
           position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       x = "County",
       title = "Hate Crime Types in Counties in NY Between 2010-2016",
       caption = "Source - NY State Division of Criminal Justice Services")
hcplot3

counties <- hatenew |>
  group_by(year, county) |>
  summarize(sum = sum(crimecount)) |>
  arrange(desc(sum))
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
counties
## # A tibble: 277 × 3
## # Groups:   year [7]
##     year county     sum
##    <dbl> <chr>    <dbl>
##  1  2012 Kings      136
##  2  2010 Kings      110
##  3  2016 Kings      101
##  4  2013 Kings       96
##  5  2014 Kings       94
##  6  2015 Kings       90
##  7  2011 Kings       86
##  8  2016 New York    86
##  9  2012 Suffolk     83
## 10  2013 New York    75
## # ℹ 267 more rows

Top 5 counties

counties2 <- hatenew |>
  group_by(county) |>
  summarize(sum = sum(crimecount)) |>
  slice_max(order_by = sum, n = 5)
counties2
## # A tibble: 5 × 2
##   county     sum
##   <chr>    <dbl>
## 1 Kings      713
## 2 New York   459
## 3 Suffolk    360
## 4 Nassau     298
## 5 Queens     235
hcplot4 <- hatenew |>
  filter(county %in% c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>
  ggplot() + 
  geom_bar(aes(x = county, y = crimecount, fill = victim_cat),
           position = "dodge", stat = "identity") + 
  labs(y = "Number of Hate Crime Incidents",
       x = "County",
       title = "Hate Crime Types in Counties in NY Between 2010-2016",
       caption = "Source - NY State Division of Criminal Justice Services")
hcplot4

How would calculations be affected by looking at hate-crimes in counties per year by population densities?

setwd("/Users/aashkanavale/Desktop/Montgomery College/MC Spring '24/DATA110/data sets")
nypop <- read_csv("newyorkpopulation.csv")
## Rows: 62 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Geography
## dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Cleaning the county names to match the previous data set

nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop |>
  rename(county = Geography) |>
  gather("year", "population", 2:8)
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 × 3
##   county                  year population
##   <chr>                  <dbl>      <dbl>
## 1 Albany , New York       2010     304078
## 2 Allegany , New York     2010      48949
## 3 Bronx , New York        2010    1388240
## 4 Broome , New York       2010     200469
## 5 Cattaraugus , New York  2010      80249
## 6 Cayuga , New York       2010      79844

Focusing on 2012

nypoplong12 <- nypoplong |>
  filter(year == 2012) |>
  arrange(desc(population)) |>
  head(10)
nypoplong12$county <- gsub(" , New York", "", nypoplong12$county)
nypoplong12
## # A tibble: 10 × 3
##    county       year population
##    <chr>       <dbl>      <dbl>
##  1 Kings        2012    2572282
##  2 Queens       2012    2278024
##  3 New York     2012    1625121
##  4 Suffolk      2012    1499382
##  5 Bronx        2012    1414774
##  6 Nassau       2012    1350748
##  7 Westchester  2012     961073
##  8 Erie         2012     920792
##  9 Monroe       2012     748947
## 10 Richmond     2012     470978

Recalling the total hate-crime counts, Kings County held the most at 713, New York at 459, Suffolk at 360, Nassau at 298, and finally Queens at 235.

Filtering hate-crimes just for 2012

counties12 <- counties |>
  filter(year == 2012) |>
  arrange(desc(sum)) 
counties12
## # A tibble: 41 × 3
## # Groups:   year [1]
##     year county        sum
##    <dbl> <chr>       <dbl>
##  1  2012 Kings         136
##  2  2012 Suffolk        83
##  3  2012 New York       71
##  4  2012 Nassau         48
##  5  2012 Queens         48
##  6  2012 Erie           28
##  7  2012 Bronx          23
##  8  2012 Richmond       18
##  9  2012 Multiple       14
## 10  2012 Westchester    13
## # ℹ 31 more rows

Joining the hate crimes data with NY population data for 2012

datajoin <- counties12 |>
  full_join(nypoplong12, by = c("county", "year"))
datajoin
## # A tibble: 41 × 4
## # Groups:   year [1]
##     year county        sum population
##    <dbl> <chr>       <dbl>      <dbl>
##  1  2012 Kings         136    2572282
##  2  2012 Suffolk        83    1499382
##  3  2012 New York       71    1625121
##  4  2012 Nassau         48    1350748
##  5  2012 Queens         48    2278024
##  6  2012 Erie           28     920792
##  7  2012 Bronx          23    1414774
##  8  2012 Richmond       18     470978
##  9  2012 Multiple       14         NA
## 10  2012 Westchester    13     961073
## # ℹ 31 more rows

Calculating the rate of incidents per 100,000 then arranging in descending order

datajoinrate <- datajoin |>
  mutate(rate = sum/population*100000) |>
  arrange(desc(rate))
datajoinrate
## # A tibble: 41 × 5
## # Groups:   year [1]
##     year county        sum population  rate
##    <dbl> <chr>       <dbl>      <dbl> <dbl>
##  1  2012 Suffolk        83    1499382 5.54 
##  2  2012 Kings         136    2572282 5.29 
##  3  2012 New York       71    1625121 4.37 
##  4  2012 Richmond       18     470978 3.82 
##  5  2012 Nassau         48    1350748 3.55 
##  6  2012 Erie           28     920792 3.04 
##  7  2012 Queens         48    2278024 2.11 
##  8  2012 Bronx          23    1414774 1.63 
##  9  2012 Westchester    13     961073 1.35 
## 10  2012 Monroe          5     748947 0.668
## # ℹ 31 more rows

The highest rates of hate-crimes in 2012 happened in:

dt <- datajoinrate[, c("county", "rate")]
dt
## # A tibble: 41 × 2
##    county       rate
##    <chr>       <dbl>
##  1 Suffolk     5.54 
##  2 Kings       5.29 
##  3 New York    4.37 
##  4 Richmond    3.82 
##  5 Nassau      3.55 
##  6 Erie        3.04 
##  7 Queens      2.11 
##  8 Bronx       1.63 
##  9 Westchester 1.35 
## 10 Monroe      0.668
## # ℹ 31 more rows

Aggregating some of the categories

aggregategroups <- hatecrimes |>
  pivot_longer(
    cols = 4:44,
    names_to = "victim_cat",
    values_to = "crimecount")
unique(aggregategroups$victim_cat)
##  [1] "anti-male"                               
##  [2] "anti-female"                             
##  [3] "anti-transgender"                        
##  [4] "anti-genderidentityexpression"           
##  [5] "anti-age*"                               
##  [6] "anti-white"                              
##  [7] "anti-black"                              
##  [8] "anti-americanindian/alaskannative"       
##  [9] "anti-asian"                              
## [10] "anti-nativehawaiian/pacificislander"     
## [11] "anti-multi-racialgroups"                 
## [12] "anti-otherrace"                          
## [13] "anti-jewish"                             
## [14] "anti-catholic"                           
## [15] "anti-protestant"                         
## [16] "anti-islamic(muslim)"                    
## [17] "anti-multi-religiousgroups"              
## [18] "anti-atheism/agnosticism"                
## [19] "anti-religiouspracticegenerally"         
## [20] "anti-otherreligion"                      
## [21] "anti-buddhist"                           
## [22] "anti-easternorthodox(greek,russian,etc.)"
## [23] "anti-hindu"                              
## [24] "anti-jehovahswitness"                    
## [25] "anti-mormon"                             
## [26] "anti-otherchristian"                     
## [27] "anti-sikh"                               
## [28] "anti-hispanic"                           
## [29] "anti-arab"                               
## [30] "anti-otherethnicity/nationalorigin"      
## [31] "anti-non-hispanic*"                      
## [32] "anti-gaymale"                            
## [33] "anti-gayfemale"                          
## [34] "anti-gay(maleandfemale)"                 
## [35] "anti-heterosexual"                       
## [36] "anti-bisexual"                           
## [37] "anti-physicaldisability"                 
## [38] "anti-mentaldisability"                   
## [39] "totalincidents"                          
## [40] "totalvictims"                            
## [41] "totaloffenders"
aggregategroups <- aggregategroups |>
  mutate(group = case_when(
    victim_cat %in% c("anti-transgender", "anti-gayfemale", "anti-gendervictim_catendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual") ~ "anti-lgbtq",
    victim_cat %in% c("anti-multi-racialgroups", "anti-jewish", "anti-protestant", "anti-multi-religousgroups", "anti-religiouspracticegenerally", "anti-buddhist", "anti-hindu", "anti-mormon", "anti-sikh", "anti-catholic", "anti-islamic(muslim)", "anti-atheism/agnosticism", "anti-otherreligion", "anti-easternorthodox(greek,russian,etc.)", "anti-jehovahswitness", "anti-otherchristian") ~ "anti-religion", 
    victim_cat %in% c("anti-asian", "anti-arab", "anti-non-hispanic", "anti-white", "anti-americanindian/alaskannative", "anti-nativehawaiian/pacificislander", "anti-otherrace", "anti-hispanic", "anti-otherethnicity/nationalorigin") ~ "anti-ethnicity",
    victim_cat %in% c("anti-physicaldisability", "anti-mentaldisability") ~ "anti-disability",
    victim_cat %in% c("anti-female", "anti-male") ~ "anti-gender",
    TRUE ~ "others"))
aggregategroups
## # A tibble: 17,343 × 6
##    county  year crimetype              victim_cat               crimecount group
##    <chr>  <dbl> <chr>                  <chr>                         <dbl> <chr>
##  1 Albany  2016 Crimes Against Persons anti-male                         0 anti…
##  2 Albany  2016 Crimes Against Persons anti-female                       0 anti…
##  3 Albany  2016 Crimes Against Persons anti-transgender                  0 anti…
##  4 Albany  2016 Crimes Against Persons anti-genderidentityexpr…          0 othe…
##  5 Albany  2016 Crimes Against Persons anti-age*                         0 othe…
##  6 Albany  2016 Crimes Against Persons anti-white                        0 anti…
##  7 Albany  2016 Crimes Against Persons anti-black                        1 othe…
##  8 Albany  2016 Crimes Against Persons anti-americanindian/ala…          0 anti…
##  9 Albany  2016 Crimes Against Persons anti-asian                        0 anti…
## 10 Albany  2016 Crimes Against Persons anti-nativehawaiian/pac…          0 anti…
## # ℹ 17,333 more rows

Creating subsets with just religion

religion <- hatecrimes |>
  pivot_longer(
    cols = 4:44,
    names_to = "victim_cat",
    values_to = "crimecount") |>
filter(victim_cat %in% c("anti-jewish", "anti-catholic", "anti-protestant", "anti-islamic(muslim)", "anti-multi-religiousgroups", "anti-atheism/agnosticism", "anti-religiouspracticegenerally", "anti-otherreligion", "anti-buddhist", "anti-easternorthodox(greek,russian,etc.", "anti-hindu", "anti-jehovahswitness", "anti-mormon", "anti-otherchristian", "anti-sikh"))
religion
## # A tibble: 5,922 × 5
##    county  year crimetype              victim_cat                     crimecount
##    <chr>  <dbl> <chr>                  <chr>                               <dbl>
##  1 Albany  2016 Crimes Against Persons anti-jewish                             0
##  2 Albany  2016 Crimes Against Persons anti-catholic                           0
##  3 Albany  2016 Crimes Against Persons anti-protestant                         0
##  4 Albany  2016 Crimes Against Persons anti-islamic(muslim)                    1
##  5 Albany  2016 Crimes Against Persons anti-multi-religiousgroups              0
##  6 Albany  2016 Crimes Against Persons anti-atheism/agnosticism                0
##  7 Albany  2016 Crimes Against Persons anti-religiouspracticegeneral…          0
##  8 Albany  2016 Crimes Against Persons anti-otherreligion                      0
##  9 Albany  2016 Crimes Against Persons anti-buddhist                           0
## 10 Albany  2016 Crimes Against Persons anti-hindu                              0
## # ℹ 5,912 more rows

Important Findings

One positive aspect of this data set is that it includes many different variables and goes into depth of each topic like LGBTQ, race, religion, gender, and even disabilities. However, one negative aspect is that the data set is about the times hate-crimes weren’t recorded. There could be so many more hate-crimes that we have zero clue about.

I would like to also study the race and LGBTQ aspects of this dataset and how the hate differs when compared to religion, like I did. I would say the most hate was aimed towards mostly religion and race but I’d like to study how it compares to the other variables in this dataset.

I would follow up with the government, possibly send a letter, to request to see the data of hate-crimes not recorded in ALL states. Bigger states like Texas and California would probably have equally as interesting results and data to study as New York’s. Being able to analyze the whole country’s gaps in where they are unable to record hate-crimes will give us an idea of how big of a problem this might be. Another thing I would do (and did) is look up why 2012 was the worst year for the Jewish community. According to CBS News New York, there were 248 anti-Semitic incidents in 2012.