C11 Pg 306
Find the characteristic polynomial of
A <- matrix(c(3,2,1,0,1,1,1,2,0), nrow=3, byrow=T)
A
## [,1] [,2] [,3]
## [1,] 3 2 1
## [2,] 0 1 1
## [3,] 1 2 0
- To get the eigenvalues, we need to solve the determinant of this
matrix;
\[\begin{bmatrix}
3 & 2 & 1 \\
0 & 1 & 1 \\
1 & 2 & 0
\end{bmatrix}\]
- and subtract the determinant of following matrix from it, to get 0.
This matrix below is just λ * \(I_n\),
where \(I_n\) is the identity matrix
for a 3x3 matrix;
\[\begin{bmatrix}
λ & 0 & 0 \\
0 & λ & 0 \\
0 & 0 & λ
\end{bmatrix}\]
- That is, the determinant of the following matrix below, det(\(A - λI_n\)) = 0
\[\begin{bmatrix}
3-λ & 2 & 1 \\
0 & 1-λ & 1 \\
1 & 2 & 0-λ
\end{bmatrix}\]

The characteristic polynomial is \(p(λ) =
-λ^{3} + 4λ^{2} - 3λ - 4 = 0\)