Periodos Bimestrales Naturales

##La estructura del archivo: 1.- Diferencia entre diferentes efectos fijos (fecha_nac natural, año nacimiento + mes nacimiento, sin efecto fijo de tiempo) Son las primeras 6 graficas (Las primeras 2 son sin efectos fijos de tiempo, las siguientes 2 son con efectos fijos de fecha de nacimiento natural, las ultimas 2 son con efectos fijos de año y mes de nacimiento)

2.- A partir de la 7ma grafica, se muestran por cada uno de los outcomes relevantes del estudio: sus grafica de event study (para identificar los ciclos politicos electorales), después las gráficas de tendencia (para ver que no se vean datos raros) y por ultimo una muestra de 20 renglones de la base usada para las regresiones (para ver que no se vean variables raras o NAs incorrectamente).

Diferencias entre diferentes efectors fijos (fecha_nac natural, año nacimiento + mes nacimiento, sin efecto fijo de tiempo)

Aquí comienzan las gráficas relevantes

Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-05-01, 2011-07-01, 2012-05-01, 20…
$ Deaths_NeoNatal_INEGI          <dbl> 176, 254, 55, 30, 36, 51, 20, 191, 63, …
$ Births_From_Mortality_NeoNatal <dbl> 19261, 24055, 6584, 3551, 5473, 6682, 2…
$ entidad                        <dbl> 11, 9, 22, 18, 31, 22, 3, 7, 13, 3, 32,…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_NeoNatal_INEGI Births_From_Mortality_NeoNatal entidad
   <date>                           <dbl>                          <dbl>   <dbl>
 1 2011-05-01                         176                          19261      11
 2 2011-07-01                         254                          24055       9
 3 2012-05-01                          55                           6584      22
 4 2013-01-01                          30                           3551      18
 5 2013-03-01                          36                           5473      31
 6 2013-06-01                          51                           6682      22
 7 2013-08-01                          20                           2337       3
 8 2014-03-01                         191                          15735       7
 9 2014-06-01                          63                           8226      13
10 2014-08-01                          18                           2352       3
11 2016-08-01                          46                           5571      32
12 2017-06-01                         437                          45292      15
13 2017-10-01                          88                           9893       5
14 2018-02-01                          38                           4046      23
15 2018-06-01                          38                           5137      10
16 2018-08-01                          38                           4172      29
17 2018-10-01                          72                          10099      28
18 2019-01-01                          31                           5076      31
19 2019-04-01                          12                           2632      18
20 2019-10-01                          27                           4163       1
Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-09-01, 2012-01-01, 2012-07-01, 20…
$ Deaths_NeoNatal_INEGI          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, …
$ Births_From_Mortality_NeoNatal <dbl> 1, 0, 134, 40, 0, 16, 0, 45, 1241, 48, …
$ ent_mun                        <glue> "20_139", "12_888", "20_002", "16_013"…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_NeoNatal_INEGI Births_From_Mortality_NeoNatal ent_mun
   <date>                           <dbl>                          <dbl> <glue> 
 1 2011-09-01                           0                              1 20_139 
 2 2012-01-01                           0                              0 12_888 
 3 2012-07-01                           0                            134 20_002 
 4 2012-07-01                           0                             40 16_013 
 5 2013-01-01                           0                              0 11_998 
 6 2013-01-01                           0                             16 20_141 
 7 2013-02-01                           0                              0 19_888 
 8 2013-08-01                           0                             45 30_093 
 9 2013-10-01                           8                           1241 10_007 
10 2014-12-01                           1                             48 30_046 
11 2016-08-01                           0                             82 01_010 
12 2016-09-01                           0                             54 14_048 
13 2016-10-01                           0                             28 30_200 
14 2017-02-01                           1                             35 21_008 
15 2017-04-01                           0                             65 20_406 
16 2018-02-01                           0                              4 20_465 
17 2018-02-01                           0                              6 32_030 
18 2018-12-01                           2                            280 15_090 
19 2019-09-01                           0                             22 21_103 
20 2019-10-01                           1                            464 13_077 

Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-01-01, 2011-03-01, 2011-07-01…
$ Deaths_Postneonatal_INEGI          <dbl> 33, 12, 39, 18, 57, 17, 81, 38, 50,…
$ Births_From_Mortality_Postneonatal <dbl> 7896, 4360, 8569, 5668, 10582, 4255…
$ entidad                            <dbl> 13, 1, 13, 17, 2, 1, 14, 26, 16, 27…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_Postneonatal_INEGI Births_From_Mortality_Po…¹ entidad
   <date>                               <dbl>                      <dbl>   <dbl>
 1 2011-01-01                              33                       7896      13
 2 2011-03-01                              12                       4360       1
 3 2011-07-01                              39                       8569      13
 4 2011-07-01                              18                       5668      17
 5 2012-09-01                              57                      10582       2
 6 2013-01-01                              17                       4255       1
 7 2013-07-01                              81                      26145      14
 8 2013-10-01                              38                       8287      26
 9 2013-12-01                              50                      15777      16
10 2015-01-01                              29                       7414      27
11 2015-02-01                               3                       1630       6
12 2015-10-01                              46                      10159       5
13 2016-10-01                              27                       5255      23
14 2016-11-01                              80                      23536      14
15 2017-06-01                              18                       6474      22
16 2017-12-01                              35                       7645      26
17 2018-02-01                              42                       9809      12
18 2018-09-01                              17                       4782      17
19 2018-12-01                              13                       4464      32
20 2019-08-01                               4                       2158       3
# ℹ abbreviated name: ¹​Births_From_Mortality_Postneonatal
Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-03-01, 2011-09-01, 2011-11-01…
$ Deaths_Postneonatal_INEGI          <dbl> 0, 0, 0, 0, 1, 0, 4, 0, 1, 1, 0, 5,…
$ Births_From_Mortality_Postneonatal <dbl> 35, 15, 0, 1, 23, 88, 901, 50, 85, …
$ ent_mun                            <glue> "29_001", "13_079", "20_464", "20_…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_Postneonatal_INEGI Births_From_Mortality_Po…¹ ent_mun
   <date>                               <dbl>                      <dbl> <glue> 
 1 2011-03-01                               0                         35 29_001 
 2 2011-09-01                               0                         15 13_079 
 3 2011-11-01                               0                          0 20_464 
 4 2012-05-01                               0                          1 20_501 
 5 2012-09-01                               1                         23 21_187 
 6 2013-01-01                               0                         88 20_551 
 7 2013-06-01                               4                        901 19_031 
 8 2014-03-01                               0                         50 14_059 
 9 2015-05-01                               1                         85 07_103 
10 2015-09-01                               1                        358 21_164 
11 2016-04-01                               0                         34 16_072 
12 2016-05-01                               5                        765 30_039 
13 2016-06-01                               0                         12 20_108 
14 2017-05-01                               0                         17 21_162 
15 2017-10-01                               0                          0 26_063 
16 2018-02-01                               3                        271 29_033 
17 2018-12-01                               0                        105 23_006 
18 2019-03-01                               0                         22 07_098 
19 2019-08-01                               2                        160 20_397 
20 2019-11-01                               2                        179 07_107 
# ℹ abbreviated name: ¹​Births_From_Mortality_Postneonatal

Rows: 20
Columns: 5
$ fecha_nacimiento                   <date> 2011-03-01, 2011-03-01, 2011-05-01…
$ Deaths_Postneonatal_INEGI          <dbl> 9, 12, 27, 37, 71, 13, 84, 119, 31,…
$ Deaths_NeoNatal_INEGI              <dbl> 19, 33, 62, 83, 161, 19, 193, 187, …
$ Births_From_Mortality_Postneonatal <dbl> 3304, 4360, 6465, 8818, 15315, 4334…
$ entidad                            <dbl> 18, 1, 22, 26, 16, 23, 30, 21, 26, …
# A tibble: 20 × 5
   fecha_nacimiento Deaths_Postneonatal_INEGI Deaths_NeoNatal_INEGI
   <date>                               <dbl>                 <dbl>
 1 2011-03-01                               9                    19
 2 2011-03-01                              12                    33
 3 2011-05-01                              27                    62
 4 2011-07-01                              37                    83
 5 2012-11-01                              71                   161
 6 2014-04-01                              13                    19
 7 2014-04-01                              84                   193
 8 2014-06-01                             119                   187
 9 2014-06-01                              31                    55
10 2014-07-01                              42                   110
11 2015-02-01                              14                    34
12 2015-06-01                              25                    64
13 2015-08-01                              34                    93
14 2015-10-01                              41                    70
15 2015-10-01                              25                    46
16 2016-01-01                              77                   191
17 2016-04-01                              42                    84
18 2016-06-01                              13                    61
19 2016-12-01                              31                    61
20 2017-09-01                             105                   240
# ℹ 2 more variables: Births_From_Mortality_Postneonatal <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento                   <date> 2011-09-01, 2012-09-01, 2013-01-01…
$ Deaths_Postneonatal_INEGI          <dbl> 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
$ Deaths_NeoNatal_INEGI              <dbl> 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0,…
$ Births_From_Mortality_Postneonatal <dbl> 228, 7, 154, 23, 25, 69, 36, 0, 12,…
$ ent_mun                            <glue> "22_017", "32_028", "15_112", "21_…
# A tibble: 20 × 5
   fecha_nacimiento Deaths_Postneonatal_INEGI Deaths_NeoNatal_INEGI
   <date>                               <dbl>                 <dbl>
 1 2011-09-01                               1                     0
 2 2012-09-01                               0                     0
 3 2013-01-01                               0                     1
 4 2013-01-01                               0                     1
 5 2014-06-01                               0                     0
 6 2015-11-01                               1                     1
 7 2015-12-01                               0                     0
 8 2015-12-01                               0                     0
 9 2016-04-01                               0                     1
10 2017-08-01                               0                     0
11 2017-10-01                               0                     0
12 2018-02-01                               0                     0
13 2018-04-01                               0                     0
14 2018-10-01                               0                     0
15 2018-11-01                               0                     1
16 2018-12-01                               0                     0
17 2019-01-01                               3                    11
18 2019-06-01                               0                     0
19 2019-07-01                               1                     0
20 2019-11-01                               0                     0
# ℹ 2 more variables: Births_From_Mortality_Postneonatal <dbl>, ent_mun <glue>

Primera infancia no tiene los datos correctos para los ultimos años ya que no se han terminado de registrar estos datos, por lo que NO se analizara la mortalidad en primera infancia

Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-07-01, 2011-07-01, 2011-07…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 2, 25, 3, 8, 16, 11, 45, 9, 24, …
$ Births_From_Mortality_PrimeraInfancia <dbl> 2193, 26591, 5374, 10538, 20574,…
$ entidad                               <dbl> 6, 14, 32, 5, 11, 16, 15, 13, 30…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ entidad
   <date>                                  <dbl>                   <dbl>   <dbl>
 1 2011-07-01                                  2                    2193       6
 2 2011-07-01                                 25                   26591      14
 3 2011-07-01                                  3                    5374      32
 4 2012-07-01                                  8                   10538       5
 5 2013-07-01                                 16                   20574      11
 6 2013-08-01                                 11                   17264      16
 7 2013-09-01                                 45                   52513      15
 8 2013-12-01                                  9                    8527      13
 9 2014-02-01                                 24                   20595      30
10 2014-06-01                                 11                   12339      20
11 2014-08-01                                  0                    2352       3
12 2014-12-01                                  6                    6839      22
13 2014-12-01                                  4                    3641      18
14 2014-12-01                                  6                   10353       5
15 2015-02-01                                 11                   14235      16
16 2015-04-01                                  2                    1619       3
17 2015-10-01                                  3                    4562       1
18 2015-12-01                                 10                   14755      16
19 2017-04-01                                 14                   14326      16
20 2017-07-01                                 18                   20496      11
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia
Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-11-01, 2012-06-01, 2012-07…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
$ Births_From_Mortality_PrimeraInfancia <dbl> 26, 11, 7, 15, 27, 2, 43, 5, 2, …
$ ent_mun                               <glue> "07_026", "16_027", "27_999", "…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ ent_mun
   <date>                                  <dbl>                   <dbl> <glue> 
 1 2011-11-01                                  0                      26 07_026 
 2 2012-06-01                                  0                      11 16_027 
 3 2012-07-01                                  0                       7 27_999 
 4 2012-07-01                                  0                      15 30_088 
 5 2012-07-01                                  0                      27 17_032 
 6 2012-09-01                                  0                       2 20_561 
 7 2013-11-01                                  1                      43 12_060 
 8 2014-08-01                                  0                       5 20_179 
 9 2014-12-01                                  0                       2 20_321 
10 2015-02-01                                  0                       0 06_999 
11 2015-03-01                                  0                      45 31_080 
12 2015-10-01                                  0                      45 05_007 
13 2016-05-01                                  0                       0 07_998 
14 2016-06-01                                  0                      14 21_192 
15 2016-07-01                                  0                     133 30_130 
16 2016-08-01                                  0                      29 08_023 
17 2017-02-01                                  0                      54 25_005 
18 2017-04-01                                  0                      99 16_017 
19 2017-05-01                                  0                       4 30_096 
20 2017-10-01                                  0                     157 13_003 
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia

Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-07-01, 2011-11-01, 2012-01…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 6, 8, 3, 24, 3, 14, 2, 9, 7, 13,…
$ Births_From_Mortality_PrimeraInfancia <dbl> 8818, 3791, 4342, 21773, 6584, 2…
$ entidad                               <dbl> 26, 18, 29, 30, 22, 21, 6, 5, 27…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ entidad
   <date>                                  <dbl>                   <dbl>   <dbl>
 1 2011-07-01                                  6                    8818      26
 2 2011-11-01                                  8                    3791      18
 3 2012-01-01                                  3                    4342      29
 4 2012-05-01                                 24                   21773      30
 5 2012-05-01                                  3                    6584      22
 6 2012-07-01                                 14                   22075      21
 7 2012-08-01                                  2                    2336       6
 8 2012-09-01                                  9                   10885       5
 9 2012-09-01                                  7                    9804      27
10 2012-10-01                                 13                   13946      19
11 2012-12-01                                  3                    2306       3
12 2013-03-01                                 15                   10798      12
13 2013-05-01                                 15                   11755      20
14 2014-03-01                                  4                    5411      17
15 2014-08-01                                 11                   11522      12
16 2015-02-01                                 27                   19369      21
17 2015-06-01                                  9                    8235      24
18 2017-04-01                                 12                   11479      20
19 2017-08-01                                 16                   11080      12
20 2017-11-01                                 23                   14539       7
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia
Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2012-03-01, 2012-10-01, 2013-06…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
$ Births_From_Mortality_PrimeraInfancia <dbl> 21, 67, 7, 43, 50, 232, 50, 275,…
$ ent_mun                               <glue> "21_126", "24_012", "20_388", "…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ ent_mun
   <date>                                  <dbl>                   <dbl> <glue> 
 1 2012-03-01                                  0                      21 21_126 
 2 2012-10-01                                  0                      67 24_012 
 3 2013-06-01                                  0                       7 20_388 
 4 2013-07-01                                  0                      43 14_058 
 5 2014-06-01                                  0                      50 19_047 
 6 2014-07-01                                  0                     232 27_001 
 7 2015-02-01                                  1                      50 30_006 
 8 2015-09-01                                  0                     275 30_003 
 9 2015-10-01                                  0                      26 16_101 
10 2016-02-01                                  0                     588 15_005 
11 2016-10-01                                  0                       2 20_018 
12 2016-10-01                                  0                       2 20_181 
13 2016-10-01                                  0                      92 29_023 
14 2016-10-01                                  0                      32 20_310 
15 2017-02-01                                  0                       5 20_214 
16 2017-02-01                                  0                      82 16_073 
17 2017-03-01                                  0                     314 21_208 
18 2017-05-01                                  1                     708 07_059 
19 2017-05-01                                  0                       0 21_998 
20 2017-08-01                                  0                      94 32_034 
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia

Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-05-01, 2012-05-01, 2012-07-01, 201…
$ Prenatal_Checkups             <dbl> 29254, 38414, 87310, 77278, 43829, 14734…
$ Births_from_Prenatal_Checkups <dbl> 3925, 4504, 12911, 10582, 7128, 1932, 27…
$ entidad                       <dbl> 23, 29, 20, 2, 27, 3, 4, 23, 12, 5, 17, …
# A tibble: 20 × 4
   fecha_nacimiento Prenatal_Checkups Births_from_Prenatal_Checkups entidad
   <date>                       <dbl>                         <dbl>   <dbl>
 1 2011-05-01                   29254                          3925      23
 2 2012-05-01                   38414                          4504      29
 3 2012-07-01                   87310                         12911      20
 4 2012-09-01                   77278                         10582       2
 5 2014-03-01                   43829                          7128      27
 6 2014-06-01                   14734                          1932       3
 7 2014-06-01                   17755                          2758       4
 8 2014-08-01                   38460                          5264      23
 9 2015-04-01                   66222                         10433      12
10 2015-12-01                   73052                          9859       5
11 2016-01-01                   34894                          4899      17
12 2016-06-01                   74740                         10432       8
13 2016-12-01                  139733                         19491      30
14 2017-06-01                   61774                          7845      13
15 2017-10-01                   37131                          4136      29
16 2018-04-01                   58441                          7752      28
17 2019-08-01                   76328                         10217      28
18 2019-08-01                   70947                          9094       2
19 2019-08-01                   52637                          6780      22
20 2019-11-01                   39857                          6366      27
Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2012-03-01, 2012-03-01, 2012-08-01, 201…
$ Prenatal_Checkups             <dbl> 65, 247, 0, 104, 54, 18, 199, 274, 117, …
$ Births_from_Prenatal_Checkups <dbl> 11, 43, 0, 14, 8, 4, 31, 40, 18, 30, 426…
$ ent_mun                       <glue> "20_169", "24_014", "04_012", "30_153",…
# A tibble: 20 × 4
   fecha_nacimiento Prenatal_Checkups Births_from_Prenatal_Checkups ent_mun
   <date>                       <dbl>                         <dbl> <glue> 
 1 2012-03-01                      65                            11 20_169 
 2 2012-03-01                     247                            43 24_014 
 3 2012-08-01                       0                             0 04_012 
 4 2013-05-01                     104                            14 30_153 
 5 2013-09-01                      54                             8 27_999 
 6 2013-10-01                      18                             4 21_133 
 7 2013-12-01                     199                            31 16_101 
 8 2014-08-01                     274                            40 28_001 
 9 2014-11-01                     117                            18 31_027 
10 2015-06-01                     221                            30 08_051 
11 2015-08-01                    3034                           426 12_038 
12 2016-01-01                      70                            12 30_002 
13 2016-02-01                     311                            33 20_293 
14 2016-08-01                      77                            11 21_059 
15 2016-11-01                    3934                           522 14_093 
16 2017-02-01                     458                            74 21_090 
17 2017-04-01                    1478                           227 30_102 
18 2017-10-01                     854                           102 13_008 
19 2018-03-01                      42                             6 11_006 
20 2019-06-01                     156                            21 24_043 

Rows: 20
Columns: 4
$ fecha_nacimiento                  <date> 2012-01-01, 2012-03-01, 2012-05-01,…
$ Births_Dont_Get_Prenatal_Atention <dbl> 521, 44, 74, 244, 53, 232, 87, 58, 6…
$ Births_Get_Prenatal_Atention      <dbl> 9323, 4262, 4136, 11106, 5487, 9112,…
$ entidad                           <dbl> 12, 1, 23, 8, 32, 8, 22, 29, 13, 2, …
# A tibble: 20 × 4
   fecha_nacimiento Births_Dont_Get_Prenatal_At…¹ Births_Get_Prenatal_…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2012-01-01                                 521                   9323      12
 2 2012-03-01                                  44                   4262       1
 3 2012-05-01                                  74                   4136      23
 4 2012-07-01                                 244                  11106       8
 5 2012-09-01                                  53                   5487      32
 6 2013-03-01                                 232                   9112       8
 7 2013-06-01                                  87                   6576      22
 8 2013-06-01                                  58                   4217      29
 9 2013-08-01                                  65                   9264      13
10 2013-11-01                                 256                   9498       2
11 2014-06-01                                 128                   5533      10
12 2014-10-01                                 195                   8242      26
13 2016-02-01                                  51                   4134       1
14 2016-06-01                                  23                   1808       6
15 2016-07-01                                 446                  20897      30
16 2017-08-01                                  27                   2223       3
17 2018-07-01                                 298                  19265      11
18 2018-12-01                                  50                   6253      22
19 2019-05-01                                 308                  16591      11
20 2019-09-01                                 238                  16336       9
# ℹ abbreviated names: ¹​Births_Dont_Get_Prenatal_Atention,
#   ²​Births_Get_Prenatal_Atention
Rows: 20
Columns: 4
$ fecha_nacimiento                  <date> 2011-07-01, 2011-11-01, 2012-01-01,…
$ Births_Dont_Get_Prenatal_Atention <dbl> 1, 7, 13, 2, 0, 10, 0, 1, 0, 1, 0, 0…
$ Births_Get_Prenatal_Atention      <dbl> 28, 54, 50, 37, 0, 126, 23, 497, 10,…
$ ent_mun                           <glue> "21_204", "07_104", "12_074", "20_1…
# A tibble: 20 × 4
   fecha_nacimiento Births_Dont_Get_Prenatal_At…¹ Births_Get_Prenatal_…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-07-01                                   1                     28 21_204 
 2 2011-11-01                                   7                     54 07_104 
 3 2012-01-01                                  13                     50 12_074 
 4 2013-01-01                                   2                     37 20_150 
 5 2013-01-01                                   0                      0 28_036 
 6 2013-01-01                                  10                    126 07_069 
 7 2013-06-01                                   0                     23 21_002 
 8 2014-02-01                                   1                    497 13_077 
 9 2015-04-01                                   0                     10 20_421 
10 2015-12-01                                   1                      7 20_071 
11 2015-12-01                                   0                     77 21_189 
12 2016-01-01                                   0                     42 17_033 
13 2016-02-01                                   1                     41 26_071 
14 2016-08-01                                   1                     29 19_036 
15 2016-09-01                                  14                    480 11_031 
16 2017-06-01                                   0                      1 28_999 
17 2018-06-01                                   0                     23 20_131 
18 2018-08-01                                   0                     22 32_006 
19 2018-10-01                                   0                     12 12_999 
20 2019-08-01                                   3                    148 20_324 
# ℹ abbreviated names: ¹​Births_Dont_Get_Prenatal_Atention,
#   ²​Births_Get_Prenatal_Atention

Rows: 20
Columns: 4
$ fecha_nacimiento                    <date> 2011-03-01, 2011-11-01, 2012-01-0…
$ Maternal_Mortality_Without_Med_Care <dbl> 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0…
$ Maternal_Mortality_With_Med_Care    <dbl> 27, 2, 24, 2, 3, 8, 3, 0, 2, 6, 4,…
$ entidad                             <dbl> 15, 4, 15, 25, 17, 9, 24, 29, 10, …
# A tibble: 20 × 4
   fecha_nacimiento Maternal_Mortality_Without_…¹ Maternal_Mortality_W…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-03-01                                   0                     27      15
 2 2011-11-01                                   0                      2       4
 3 2012-01-01                                   2                     24      15
 4 2012-05-01                                   0                      2      25
 5 2012-11-01                                   0                      3      17
 6 2013-01-01                                   0                      8       9
 7 2013-02-01                                   0                      3      24
 8 2015-02-01                                   0                      0      29
 9 2015-04-01                                   0                      2      10
10 2015-06-01                                   1                      6      21
11 2015-12-01                                   1                      4      16
12 2016-02-01                                   0                      5      16
13 2016-03-01                                   0                      2      17
14 2016-06-01                                   0                      1      32
15 2016-08-01                                   0                      1       1
16 2016-12-01                                   0                      2      25
17 2016-12-01                                   0                      7      21
18 2017-04-01                                   3                      3      28
19 2018-03-01                                   0                      4      11
20 2019-10-01                                   0                      0      26
# ℹ abbreviated names: ¹​Maternal_Mortality_Without_Med_Care,
#   ²​Maternal_Mortality_With_Med_Care
Rows: 20
Columns: 4
$ fecha_nacimiento                    <date> 2011-01-01, 2011-03-01, 2012-09-0…
$ Maternal_Mortality_Without_Med_Care <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Maternal_Mortality_With_Med_Care    <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0…
$ ent_mun                             <glue> "26_060", "24_008", "07_020", "15…
# A tibble: 20 × 4
   fecha_nacimiento Maternal_Mortality_Without_…¹ Maternal_Mortality_W…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-01-01                                   0                      0 26_060 
 2 2011-03-01                                   0                      0 24_008 
 3 2012-09-01                                   0                      1 07_020 
 4 2012-09-01                                   0                      0 15_077 
 5 2013-01-01                                   0                      0 28_019 
 6 2013-03-01                                   0                      0 16_049 
 7 2013-05-01                                   0                      0 30_004 
 8 2013-06-01                                   0                      0 24_018 
 9 2013-12-01                                   0                      0 16_106 
10 2014-01-01                                   0                      0 14_108 
11 2014-12-01                                   0                      1 15_070 
12 2016-10-01                                   0                      0 20_161 
13 2017-10-01                                   0                      1 30_059 
14 2017-10-01                                   0                      0 20_121 
15 2018-06-01                                   0                      0 25_018 
16 2018-08-01                                   0                      0 20_201 
17 2018-09-01                                   0                      0 30_108 
18 2018-10-01                                   0                      0 29_015 
19 2018-12-01                                   0                      0 20_059 
20 2019-06-01                                   0                      0 20_226 
# ℹ abbreviated names: ¹​Maternal_Mortality_Without_Med_Care,
#   ²​Maternal_Mortality_With_Med_Care

Rows: 20
Columns: 4
$ fecha_nacimiento            <date> 2011-01-01, 2011-09-01, 2011-11-01, 2012-…
$ Births_From_Weight_Adjusted <dbl> 9691, 9754, 19082, 7727, 2286, 4076, 17275…
$ Weight_Adjusted             <dbl> 30662757, 31235733, 59334204, 25720250, 74…
$ entidad                     <dbl> 20, 27, 21, 26, 3, 23, 11, 18, 14, 23, 12,…
# A tibble: 20 × 4
   fecha_nacimiento Births_From_Weight_Adjusted Weight_Adjusted entidad
   <date>                                 <dbl>           <dbl>   <dbl>
 1 2011-01-01                              9691        30662757      20
 2 2011-09-01                              9754        31235733      27
 3 2011-11-01                             19082        59334204      21
 4 2012-01-01                              7727        25720250      26
 5 2012-08-01                              2286         7496471       3
 6 2013-01-01                              4076        13033620      23
 7 2013-01-01                             17275        54210605      11
 8 2013-11-01                              3658        11913501      18
 9 2014-01-01                             22760        72260823      14
10 2014-10-01                              5230        16621984      23
11 2014-10-01                             10887        34298598      12
12 2014-11-01                             20298        61821956       9
13 2015-02-01                              5148        16370233      10
14 2018-08-01                              9944        31684331       8
15 2018-08-01                              3954        12109697      29
16 2018-09-01                             20530        65091084      30
17 2018-11-01                              4290        13358923      17
18 2019-02-01                              8024        25764675       8
19 2019-06-01                              6495        21053232      25
20 2019-07-01                              5333        16329813      31
Rows: 20
Columns: 4
$ fecha_nacimiento            <date> 2011-01-01, 2012-01-01, 2012-03-01, 2012-…
$ Births_From_Weight_Adjusted <dbl> 43, 22, 151, 190, 287, 54, 2, 14, 1209, 22…
$ Weight_Adjusted             <dbl> 130285, 67805, 494171, 601713, 902138, 173…
$ ent_mun                     <glue> "13_075", "08_003", "16_012", "21_043", "…
# A tibble: 20 × 4
   fecha_nacimiento Births_From_Weight_Adjusted Weight_Adjusted ent_mun
   <date>                                 <dbl>           <dbl> <glue> 
 1 2011-01-01                                43          130285 13_075 
 2 2012-01-01                                22           67805 08_003 
 3 2012-03-01                               151          494171 16_012 
 4 2012-03-01                               190          601713 21_043 
 5 2014-01-01                               287          902138 16_050 
 6 2014-05-01                                54          173740 07_005 
 7 2014-12-01                                 2            7260 05_016 
 8 2014-12-01                                14           45950 26_039 
 9 2015-04-01                              1209         3712125 15_039 
10 2015-10-01                               227          744285 19_033 
11 2015-12-01                               140          450632 20_324 
12 2016-06-01                                33          105006 30_188 
13 2017-04-01                                11           36700 13_043 
14 2017-05-01                                40          129265 30_177 
15 2017-06-01                                 6           19580 21_141 
16 2017-06-01                               217          678740 30_155 
17 2017-08-01                                 0               0 20_119 
18 2017-10-01                               337         1021694 29_013 
19 2018-02-01                                 1            3260 20_563 
20 2019-06-01                                20           63162 24_044 

Rows: 20
Columns: 5
$ fecha_nacimiento                                     <date> 2011-03-01, 2012…
$ Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE  <dbl> 10183, 3454, 1756…
$ Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE <dbl> 1698, 614, 446, 9…
$ Births_from_quarter_first_prenatal_TERCER_TRIMESTRE  <dbl> 468, 116, 90, 161…
$ entidad                                              <dbl> 19, 23, 4, 25, 6,…
# A tibble: 20 × 5
   fecha_nacimiento Births_from_quarter_first_prenatal_…¹ Births_from_quarter_…²
   <date>                                           <dbl>                  <dbl>
 1 2011-03-01                                       10183                   1698
 2 2012-01-01                                        3454                    614
 3 2013-02-01                                        1756                    446
 4 2013-05-01                                        5919                    945
 5 2013-12-01                                        1839                    288
 6 2015-02-01                                        6672                   1986
 7 2015-02-01                                       11633                   1940
 8 2015-04-01                                       10979                   2120
 9 2015-12-01                                       11857                   2410
10 2016-04-01                                        8504                   2391
11 2016-04-01                                        6785                   1673
12 2016-06-01                                        7475                   1365
13 2017-02-01                                       11126                   1884
14 2017-06-01                                        5099                   1169
15 2017-08-01                                       13300                   2035
16 2018-01-01                                        4047                   1512
17 2018-10-01                                        1637                    282
18 2018-10-01                                        5389                   1001
19 2019-04-01                                        1984                    425
20 2019-04-01                                        3481                    419
# ℹ abbreviated names: ¹​Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE,
#   ²​Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE
# ℹ 2 more variables:
#   Births_from_quarter_first_prenatal_TERCER_TRIMESTRE <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento                                     <date> 2011-01-01, 2011…
$ Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE  <dbl> 240, 17, 56, 22, …
$ Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE <dbl> 83, 0, 8, 3, 29, …
$ Births_from_quarter_first_prenatal_TERCER_TRIMESTRE  <dbl> 18, 0, 0, 0, 6, 0…
$ ent_mun                                              <glue> "09_009", "15_07…
# A tibble: 20 × 5
   fecha_nacimiento Births_from_quarter_first_prenatal_…¹ Births_from_quarter_…²
   <date>                                           <dbl>                  <dbl>
 1 2011-01-01                                         240                     83
 2 2011-05-01                                          17                      0
 3 2012-05-01                                          56                      8
 4 2012-11-01                                          22                      3
 5 2013-05-01                                          80                     29
 6 2013-12-01                                          28                      2
 7 2014-02-01                                           9                      4
 8 2014-08-01                                          70                     18
 9 2015-04-01                                           4                      3
10 2016-02-01                                         103                      3
11 2016-02-01                                          22                      9
12 2016-09-01                                           8                      1
13 2016-10-01                                          23                      9
14 2017-02-01                                          75                     13
15 2017-08-01                                          20                      2
16 2017-11-01                                          56                     19
17 2018-01-01                                           3                      0
18 2018-08-01                                           6                      1
19 2018-12-01                                          85                     29
20 2019-07-01                                           5                      0
# ℹ abbreviated names: ¹​Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE,
#   ²​Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE
# ℹ 2 more variables:
#   Births_from_quarter_first_prenatal_TERCER_TRIMESTRE <dbl>, ent_mun <glue>

Rows: 20
Columns: 13
$ fecha_nacimiento                                                                <date> …
$ Births_from_who_helped_to_deliver_enfermera                                     <dbl> …
$ Births_from_who_helped_to_deliver_medico                                        <dbl> …
$ Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl> …
$ Births_from_who_helped_to_deliver_general                                       <dbl> …
$ Births_from_who_helped_to_deliver_partera                                       <dbl> …
$ Births_from_who_helped_to_deliver_otro                                          <dbl> …
$ Births_from_who_helped_to_deliver_otro_especialista                             <dbl> …
$ Births_from_who_helped_to_deliver_mpss                                          <dbl> …
$ Births_from_who_helped_to_deliver_mip                                           <dbl> …
$ Births_from_who_helped_to_deliver_residente                                     <dbl> …
$ Births_from_who_helped_to_deliver_gineco_obstetra                               <dbl> …
$ entidad                                                                         <dbl> …
# A tibble: 20 × 13
   fecha_nacimiento Births_from_who_helped_to_deliver_e…¹ Births_from_who_help…²
   <date>                                           <dbl>                  <dbl>
 1 2011-01-01                                          80                   9852
 2 2012-05-01                                          16                   6549
 3 2012-07-01                                           7                   6560
 4 2012-09-01                                          10                   5057
 5 2012-11-01                                           4                   9672
 6 2013-03-01                                          26                   8610
 7 2013-03-01                                          42                  24252
 8 2013-12-01                                           3                   4173
 9 2014-10-01                                          34                   8472
10 2014-11-01                                          35                  25031
11 2015-08-01                                          24                   6455
12 2015-12-01                                           2                   1999
13 2016-04-01                                          28                   7965
14 2016-10-01                                           6                   4495
15 2016-10-01                                           2                   3703
16 2017-10-01                                           4                   3233
17 2018-02-01                                           2                   3286
18 2018-06-01                                          39                   4673
19 2018-10-01                                          73                   1763
20 2019-05-01                                          39                   4813
# ℹ abbreviated names: ¹​Births_from_who_helped_to_deliver_enfermera,
#   ²​Births_from_who_helped_to_deliver_medico
# ℹ 10 more variables:
#   Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl>,
#   Births_from_who_helped_to_deliver_general <dbl>,
#   Births_from_who_helped_to_deliver_partera <dbl>,
#   Births_from_who_helped_to_deliver_otro <dbl>, …
Rows: 20
Columns: 13
$ fecha_nacimiento                                                                <date> …
$ Births_from_who_helped_to_deliver_enfermera                                     <dbl> …
$ Births_from_who_helped_to_deliver_medico                                        <dbl> …
$ Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl> …
$ Births_from_who_helped_to_deliver_general                                       <dbl> …
$ Births_from_who_helped_to_deliver_partera                                       <dbl> …
$ Births_from_who_helped_to_deliver_otro                                          <dbl> …
$ Births_from_who_helped_to_deliver_otro_especialista                             <dbl> …
$ Births_from_who_helped_to_deliver_mpss                                          <dbl> …
$ Births_from_who_helped_to_deliver_mip                                           <dbl> …
$ Births_from_who_helped_to_deliver_residente                                     <dbl> …
$ Births_from_who_helped_to_deliver_gineco_obstetra                               <dbl> …
$ ent_mun                                                                         <glue> …
# A tibble: 20 × 13
   fecha_nacimiento Births_from_who_helped_to_deliver_e…¹ Births_from_who_help…²
   <date>                                           <dbl>                  <dbl>
 1 2011-03-01                                           3                    440
 2 2011-05-01                                           0                     71
 3 2011-11-01                                           0                    212
 4 2012-05-01                                           0                     18
 5 2013-02-01                                           2                   2294
 6 2013-09-01                                           1                     84
 7 2014-04-01                                           1                     30
 8 2014-04-01                                           0                     15
 9 2014-08-01                                           0                     97
10 2015-06-01                                           0                     19
11 2016-01-01                                           0                     29
12 2016-04-01                                           0                    123
13 2016-05-01                                           0                    175
14 2016-05-01                                           0                     22
15 2016-10-01                                           0                    103
16 2017-10-01                                           0                      2
17 2017-10-01                                           0                      2
18 2018-06-01                                           0                      5
19 2019-02-01                                           0                      7
20 2019-08-01                                           0                      0
# ℹ abbreviated names: ¹​Births_from_who_helped_to_deliver_enfermera,
#   ²​Births_from_who_helped_to_deliver_medico
# ℹ 10 more variables:
#   Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl>,
#   Births_from_who_helped_to_deliver_general <dbl>,
#   Births_from_who_helped_to_deliver_partera <dbl>,
#   Births_from_who_helped_to_deliver_otro <dbl>, …

Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-01-01, 2011-07-01, 2012-03-01, 201…
$ Gestational_Weeks             <dbl> 295619, 337319, 955011, 264546, 450273, …
$ Births_From_Gestational_Weeks <dbl> 7641, 8721, 24635, 6832, 11529, 22253, 2…
$ entidad                       <dbl> 24, 24, 14, 10, 20, 9, 14, 28, 28, 21, 4…
# A tibble: 20 × 4
   fecha_nacimiento Gestational_Weeks Births_From_Gestational_Weeks entidad
   <date>                       <dbl>                         <dbl>   <dbl>
 1 2011-01-01                  295619                          7641      24
 2 2011-07-01                  337319                          8721      24
 3 2012-03-01                  955011                         24635      14
 4 2012-09-01                  264546                          6832      10
 5 2013-01-01                  450273                         11529      20
 6 2013-05-01                  858561                         22253       9
 7 2013-11-01                  969801                         25039      14
 8 2014-02-01                  330883                          8544      28
 9 2014-04-01                  323486                          8350      28
10 2014-10-01                  800567                         20634      21
11 2015-04-01                  100507                          2600       4
12 2015-06-01                  119143                          3072      18
13 2015-11-01                  826790                         21264      30
14 2017-06-01                  190090                          4890      23
15 2017-06-01                  587718                         15345      19
16 2018-06-01                  514787                         13338      16
17 2018-12-01                  523547                         13550      16
18 2019-03-01                  658346                         17101      11
19 2019-04-01                  270932                          7023      24
20 2019-10-01                  197929                          5091      23
Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-07-01, 2012-01-01, 2013-06-01, 201…
$ Gestational_Weeks             <dbl> 586, 400, 2394, 37450, 2656, 39, 230, 51…
$ Births_From_Gestational_Weeks <dbl> 15, 10, 63, 963, 68, 1, 6, 13, 21, 20, 2…
$ ent_mun                       <glue> "10_031", "20_024", "16_022", "09_011",…
# A tibble: 20 × 4
   fecha_nacimiento Gestational_Weeks Births_From_Gestational_Weeks ent_mun
   <date>                       <dbl>                         <dbl> <glue> 
 1 2011-07-01                     586                            15 10_031 
 2 2012-01-01                     400                            10 20_024 
 3 2013-06-01                    2394                            63 16_022 
 4 2013-09-01                   37450                           963 09_011 
 5 2014-06-01                    2656                            68 15_075 
 6 2014-12-01                      39                             1 26_005 
 7 2015-10-01                     230                             6 29_051 
 8 2015-12-01                     511                            13 20_345 
 9 2015-12-01                     827                            21 21_168 
10 2016-02-01                     783                            20 12_044 
11 2016-04-01                     756                            20 21_084 
12 2016-12-01                     375                            10 32_027 
13 2017-02-01                     680                            18 13_064 
14 2017-06-01                    4085                           105 30_204 
15 2017-06-01                      79                             2 20_404 
16 2017-12-01                    3743                            96 24_025 
17 2018-02-01                    1931                            50 20_014 
18 2018-02-01                     469                            12 21_150 
19 2018-10-01                     468                            12 20_108 
20 2019-10-01                     992                            26 28_006 

Rows: 20
Columns: 7
$ fecha_nacimiento                     <date> 2011-01-01, 2011-03-01, 2011-11-…
$ Births_from_used_procedure_CESAREA   <dbl> 2007, 2760, 2398, 3025, 5656, 942…
$ Births_from_used_procedure_EUTOCICO  <dbl> 3571, 2750, 2789, 3643, 6070, 118…
$ Births_from_used_procedure_FORCEPS   <dbl> 10, 2, 4, 6, 181, 18, 1444, 6, 31…
$ Births_from_used_procedure_OTRO      <dbl> 7, 5, 5, 3, 17, 21, 17, 1, 8, 2, …
$ Births_from_used_procedure_DISTOCICO <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84,…
$ entidad                              <dbl> 10, 17, 17, 27, 28, 30, 19, 18, 2…
# A tibble: 20 × 7
   fecha_nacimiento Births_from_used_procedure_CESAREA Births_from_used_proced…¹
   <date>                                        <dbl>                     <dbl>
 1 2011-01-01                                     2007                      3571
 2 2011-03-01                                     2760                      2750
 3 2011-11-01                                     2398                      2789
 4 2012-01-01                                     3025                      3643
 5 2012-09-01                                     5656                      6070
 6 2013-03-01                                     9422                     11810
 7 2014-06-01                                     8120                      5633
 8 2014-12-01                                     1328                      2303
 9 2015-02-01                                     2874                      3300
10 2015-03-01                                     2595                      3021
11 2015-09-01                                     6025                     10647
12 2016-02-01                                    20210                     24425
13 2016-03-01                                     9965                      9745
14 2017-05-01                                     2537                      2552
15 2017-06-01                                     8073                      5973
16 2017-10-01                                     2222                      1901
17 2018-06-01                                     9084                      9577
18 2018-08-01                                     2237                      2259
19 2019-08-01                                     2156                      3072
20 2019-09-01                                     3676                      4147
# ℹ abbreviated name: ¹​Births_from_used_procedure_EUTOCICO
# ℹ 4 more variables: Births_from_used_procedure_FORCEPS <dbl>,
#   Births_from_used_procedure_OTRO <dbl>,
#   Births_from_used_procedure_DISTOCICO <dbl>, entidad <dbl>
Rows: 20
Columns: 7
$ fecha_nacimiento                     <date> 2011-03-01, 2012-11-01, 2013-02-…
$ Births_from_used_procedure_CESAREA   <dbl> 6, 0, 34, 57, 11, 3, 4, 2, 0, 17,…
$ Births_from_used_procedure_EUTOCICO  <dbl> 15, 0, 72, 50, 14, 6, 49, 2, 0, 9…
$ Births_from_used_procedure_FORCEPS   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Births_from_used_procedure_OTRO      <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
$ Births_from_used_procedure_DISTOCICO <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, …
$ ent_mun                              <glue> "24_033", "20_114", "16_056", "0…
# A tibble: 20 × 7
   fecha_nacimiento Births_from_used_procedure_CESAREA Births_from_used_proced…¹
   <date>                                        <dbl>                     <dbl>
 1 2011-03-01                                        6                        15
 2 2012-11-01                                        0                         0
 3 2013-02-01                                       34                        72
 4 2013-05-01                                       57                        50
 5 2013-12-01                                       11                        14
 6 2014-03-01                                        3                         6
 7 2014-06-01                                        4                        49
 8 2015-06-01                                        2                         2
 9 2015-06-01                                        0                         0
10 2016-02-01                                       17                         9
11 2016-11-01                                       10                        19
12 2016-12-01                                       47                        44
13 2017-02-01                                        1                         9
14 2017-02-01                                       20                        86
15 2017-04-01                                        0                         1
16 2017-04-01                                        3                         5
17 2017-06-01                                      293                       325
18 2017-12-01                                        6                         7
19 2017-12-01                                       25                        62
20 2018-03-01                                       19                        38
# ℹ abbreviated name: ¹​Births_from_used_procedure_EUTOCICO
# ℹ 4 more variables: Births_from_used_procedure_FORCEPS <dbl>,
#   Births_from_used_procedure_OTRO <dbl>,
#   Births_from_used_procedure_DISTOCICO <dbl>, ent_mun <glue>

Rows: 20
Columns: 4
$ fecha_nacimiento                                   <date> 2012-01-01, 2012-1…
$ Births_from_mother_scholarity_Preparatorio_Y_Menos <dbl> 7669, 1940, 17735, …
$ Births_from_mother_scholarity_Profesional_Y_Mas    <dbl> 1479, 371, 1827, 41…
$ entidad                                            <dbl> 28, 3, 11, 3, 10, 2…
# A tibble: 20 × 4
   fecha_nacimiento Births_from_mother_scholari…¹ Births_from_mother_s…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2012-01-01                                7669                   1479      28
 2 2012-10-01                                1940                    371       3
 3 2012-11-01                               17735                   1827      11
 4 2012-12-01                                1871                    414       3
 5 2013-01-01                                4926                    638      10
 6 2013-07-01                                8913                   1381       2
 7 2013-07-01                               13981                   1430       7
 8 2013-08-01                                7712                   2135      25
 9 2014-02-01                               12897                   1467      16
10 2014-09-01                               14942                   1824      16
11 2014-11-01                                7345                   1216      27
12 2015-02-01                               10846                   2511      19
13 2015-05-01                                6596                   1116      27
14 2015-07-01                                7959                   1306      27
15 2015-09-01                                4843                    882      17
16 2016-04-01                                2286                    520      18
17 2017-02-01                                8139                   1214       8
18 2018-10-01                                4104                    578      32
19 2019-04-01                                6028                    871       2
20 2019-06-01                                4052                    701      23
# ℹ abbreviated names: ¹​Births_from_mother_scholarity_Preparatorio_Y_Menos,
#   ²​Births_from_mother_scholarity_Profesional_Y_Mas
Rows: 20
Columns: 4
$ fecha_nacimiento                                   <date> 2011-09-01, 2012-0…
$ Births_from_mother_scholarity_Preparatorio_Y_Menos <dbl> 87, 14, 55, 1, 101,…
$ Births_from_mother_scholarity_Profesional_Y_Mas    <dbl> 1, 0, 1, 0, 28, 0, …
$ ent_mun                                            <glue> "14_125", "12_024"…
# A tibble: 20 × 4
   fecha_nacimiento Births_from_mother_scholari…¹ Births_from_mother_s…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-09-01                                  87                      1 14_125 
 2 2012-01-01                                  14                      0 12_024 
 3 2012-09-01                                  55                      1 30_095 
 4 2013-03-01                                   1                      0 20_004 
 5 2013-06-01                                 101                     28 04_001 
 6 2015-06-01                                  21                      0 30_212 
 7 2015-08-01                                  98                     23 15_999 
 8 2015-10-01                                  23                      0 20_072 
 9 2016-01-01                                 606                    172 30_039 
10 2016-01-01                                   8                      0 14_117 
11 2016-07-01                                   8                      0 21_162 
12 2017-02-01                                  57                      6 24_057 
13 2017-12-01                                 109                      1 24_049 
14 2018-04-01                                 207                     21 15_001 
15 2018-05-01                                 392                     78 21_132 
16 2018-08-01                                  44                      7 20_006 
17 2018-11-01                                 149                     30 30_003 
18 2018-12-01                                  65                      7 32_048 
19 2019-02-01                                 641                    277 26_018 
20 2019-08-01                                  16                      2 19_032 
# ℹ abbreviated names: ¹​Births_from_mother_scholarity_Preparatorio_Y_Menos,
#   ²​Births_from_mother_scholarity_Profesional_Y_Mas

Rows: 20
Columns: 4
$ fecha_nacimiento        <date> 2011-03-01, 2012-10-01, 2013-01-01, 2013-03-0…
$ Enrolled_health_service <dbl> 5788, 2239, 29180, 16083, 9500, 34250, 2037, 1…
$ Not_Enrolled            <dbl> 764, 102, 16198, 4498, 2019, 15677, 300, 2269,…
$ entidad                 <dbl> 22, 3, 15, 30, 20, 15, 4, 11, 22, 9, 27, 20, 2…
# A tibble: 20 × 4
   fecha_nacimiento Enrolled_health_service Not_Enrolled entidad
   <date>                             <dbl>        <dbl>   <dbl>
 1 2011-03-01                          5788          764      22
 2 2012-10-01                          2239          102       3
 3 2013-01-01                         29180        16198      15
 4 2013-03-01                         16083         4498      30
 5 2013-05-01                          9500         2019      20
 6 2013-07-01                         34250        15677      15
 7 2014-02-01                          2037          300       4
 8 2014-03-01                         15666         2269      11
 9 2014-06-01                          5819          769      22
10 2014-11-01                         15576         5886       9
11 2016-09-01                          8646          711      27
12 2017-04-01                         10400          814      20
13 2017-04-01                          6743          488      24
14 2017-05-01                         18905         3337      14
15 2017-10-01                         10361          391      12
16 2018-05-01                         11384         1377       7
17 2018-10-01                         14329         3601      21
18 2018-12-01                          6615          597      25
19 2019-01-01                          4654          265      31
20 2019-06-01                          4372          300      23
Rows: 20
Columns: 4
$ fecha_nacimiento        <date> 2011-07-01, 2011-07-01, 2011-09-01, 2012-03-0…
$ Enrolled_health_service <dbl> 322, 6, 3, 58, 35, 3875, 147, 3, 1706, 22, 4, …
$ Not_Enrolled            <dbl> 12, 0, 1, 1, 6, 982, 52, 0, 215, 0, 0, 72, 0, …
$ ent_mun                 <glue> "02_003", "20_122", "21_165", "25_005", "18_0…
# A tibble: 20 × 4
   fecha_nacimiento Enrolled_health_service Not_Enrolled ent_mun
   <date>                             <dbl>        <dbl> <glue> 
 1 2011-07-01                           322           12 02_003 
 2 2011-07-01                             6            0 20_122 
 3 2011-09-01                             3            1 21_165 
 4 2012-03-01                            58            1 25_005 
 5 2012-05-01                            35            6 18_019 
 6 2012-07-01                          3875          982 14_039 
 7 2012-07-01                           147           52 13_003 
 8 2013-01-01                             3            0 20_243 
 9 2013-09-01                          1706          215 14_098 
10 2015-09-01                            22            0 30_005 
11 2015-11-01                             4            0 17_999 
12 2016-08-01                           199           72 16_076 
13 2016-10-01                            14            0 21_139 
14 2016-10-01                            73           16 30_125 
15 2017-03-01                             0            0 07_122 
16 2017-06-01                            12            5 21_079 
17 2018-08-01                             4            0 20_179 
18 2018-08-01                             0            0 26_007 
19 2019-09-01                            35            0 31_080 
20 2019-09-01                             6            0 21_216 

Rows: 20
Columns: 22
$ fecha_nacimiento      <date> 2011-01-01, 2011-05-01, 2011-11-01, 2014-01-01,…
$ IMSS_2                <int> 1140, 3286, 1183, 9299, 1508, 821, 9911, 610, 12…
$ ISSFAM                <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ ISSSTE_2              <int> 436, 285, 134, 808, 108, 160, 837, 73, 118, 102,…
$ PEMEX                 <int> 3, 113, 187, 40, 0, 0, 30, 36, 181, 0, 156, 30, …
$ SEDENA                <int> 93, 18, 3, 523, 12, 9, 557, 11, 32, 18, 32, 497,…
$ SEMAR                 <int> 29, 34, 11, 21, 7, 3, 33, 14, 12, 0, 8, 20, 2, 1…
$ IMSS_BIENESTAR        <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ IMSS_OPORTUNIDADES    <int> 6, 20, 0, 16, 0, 2, 38, 35, 0, 0, 5, 105, 0, 41,…
$ SEGURO_POPULAR        <int> 6242, 4563, 6107, 18522, 1889, 1799, 19433, 1742…
$ SEGURO_POPULAR_INSABI <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ NINGUNA               <int> 1373, 896, 585, 13184, 301, 242, 12841, 147, 598…
$ NO_ESPECIFICADO       <int> 5, 14, 10, 6, 2, 1, 6, 4, 3, 0, 0, 7, 0, 1, 0, 0…
$ NO_APLICA             <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ SE_IGNORA             <int> 103, 119, 151, 2287, 217, 70, 2410, 75, 196, 4, …
$ OTRA                  <int> 14, 129, 297, 1699, 9, 12, 1644, 11, 203, 5, 230…
$ Contributory_System   <int> 1701, 3736, 1518, 10691, 1635, 993, 11368, 744, …
$ Non_Contributory      <int> 6248, 4583, 6107, 18538, 1889, 1801, 19471, 1777…
$ NONE_NOT_SPECIFIED    <int> 1481, 1029, 746, 15477, 520, 313, 15257, 226, 79…
$ Otra                  <int> 14, 129, 297, 1699, 9, 12, 1644, 11, 203, 5, 230…
$ TOTAL                 <int> 9444, 9477, 8668, 46405, 4053, 3119, 47740, 2758…
$ entidad               <dbl> 12, 28, 27, 15, 23, 18, 15, 4, 27, 29, 27, 15, 1…
# A tibble: 20 × 22
   fecha_nacimiento IMSS_2 ISSFAM ISSSTE_2 PEMEX SEDENA SEMAR IMSS_BIENESTAR
   <date>            <int>  <int>    <int> <int>  <int> <int>          <int>
 1 2011-01-01         1140      0      436     3     93    29              0
 2 2011-05-01         3286      0      285   113     18    34              0
 3 2011-11-01         1183      0      134   187      3    11              0
 4 2014-01-01         9299      0      808    40    523    21              0
 5 2014-02-01         1508      0      108     0     12     7              0
 6 2014-05-01          821      0      160     0      9     3              0
 7 2014-06-01         9911      0      837    30    557    33              0
 8 2014-06-01          610      0       73    36     11    14              0
 9 2014-11-01         1273      0      118   181     32    12              0
10 2015-10-01          632      0      102     0     18     0              0
11 2015-11-01         1235      0      134   156     32     8              0
12 2016-02-01         8972      0      882    30    497    20              0
13 2016-04-01         1676      0      162     0      0     2              0
14 2017-07-01         9094      0      274    12     84    12              0
15 2017-08-01         3283      0      189     3     32    11              0
16 2018-03-01         3429      0      409   175     78    72              0
17 2018-06-01         2704      0      129    25      4     9              0
18 2018-06-01          683      0      103    16      5     1              0
19 2019-07-01         3942      0      379   161     63    80              0
20 2019-07-01         1825      0      137    25      5    12              0
# ℹ 14 more variables: IMSS_OPORTUNIDADES <int>, SEGURO_POPULAR <int>,
#   SEGURO_POPULAR_INSABI <int>, NINGUNA <int>, NO_ESPECIFICADO <int>,
#   NO_APLICA <int>, SE_IGNORA <int>, OTRA <int>, Contributory_System <int>,
#   Non_Contributory <int>, NONE_NOT_SPECIFIED <int>, Otra <int>, TOTAL <int>,
#   entidad <dbl>
Rows: 20
Columns: 22
$ fecha_nacimiento      <date> 2011-05-01, 2011-09-01, 2011-09-01, 2011-09-01,…
$ IMSS_2                <dbl> 0, 1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 16, 0, 406, 8, …
$ ISSFAM                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ ISSSTE_2              <dbl> 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 3, 6, 0, 35, 1, 0,…
$ PEMEX                 <dbl> 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
$ SEDENA                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 0, 0,…
$ SEMAR                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ IMSS_BIENESTAR        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ IMSS_OPORTUNIDADES    <dbl> 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 2, 1, 0, 0, …
$ SEGURO_POPULAR        <dbl> 35, 3, 43, 6, 18, 30, 10, 16, 3, 22, 75, 113, 0,…
$ SEGURO_POPULAR_INSABI <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ NINGUNA               <dbl> 0, 0, 2, 2, 0, 32, 1, 5, 7, 1, 5, 13, 0, 266, 14…
$ NO_ESPECIFICADO       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ NO_APLICA             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ SE_IGNORA             <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 60, 13, 0…
$ OTRA                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 34, 0, 0,…
$ Contributory_System   <dbl> 0, 1, 1, 1, 3, 3, 2, 0, 1, 2, 5, 23, 0, 455, 9, …
$ Non_Contributory      <dbl> 35, 3, 43, 6, 18, 33, 10, 16, 3, 22, 78, 113, 2,…
$ NONE_NOT_SPECIFIED    <dbl> 0, 0, 2, 2, 0, 33, 1, 5, 10, 1, 5, 13, 0, 326, 2…
$ Otra                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 34, 0, 0,…
$ TOTAL                 <dbl> 35, 4, 46, 9, 21, 69, 13, 21, 15, 25, 88, 149, 2…
$ ent_mun               <glue> "20_012", "05_005", "22_015", "20_519", "14_032…
# A tibble: 20 × 22
   fecha_nacimiento IMSS_2 ISSFAM ISSSTE_2 PEMEX SEDENA SEMAR IMSS_BIENESTAR
   <date>            <dbl>  <dbl>    <dbl> <dbl>  <dbl> <dbl>          <dbl>
 1 2011-05-01            0      0        0     0      0     0              0
 2 2011-09-01            1      0        0     0      0     0              0
 3 2011-09-01            1      0        0     0      0     0              0
 4 2011-09-01            0      0        1     0      0     0              0
 5 2013-05-01            2      0        1     0      0     0              0
 6 2013-06-01            0      0        1     2      0     0              0
 7 2013-08-01            2      0        0     0      0     0              0
 8 2014-04-01            0      0        0     0      0     0              0
 9 2014-08-01            1      0        0     0      0     0              0
10 2014-10-01            0      0        1     0      1     0              0
11 2015-06-01            2      0        3     0      0     0              0
12 2016-02-01           16      0        6     0      1     0              0
13 2016-04-01            0      0        0     0      0     0              0
14 2016-08-01          406      0       35     1     13     0              0
15 2017-04-01            8      0        1     0      0     0              0
16 2017-04-01            2      0        0     0      0     0              0
17 2017-06-01            0      0        2     0      0     0              0
18 2017-08-01            3      0        0     0      8     0              0
19 2017-11-01            3      0        0     0      0     0              0
20 2019-07-01           78      0        7     2      3     1              0
# ℹ 14 more variables: IMSS_OPORTUNIDADES <dbl>, SEGURO_POPULAR <dbl>,
#   SEGURO_POPULAR_INSABI <dbl>, NINGUNA <dbl>, NO_ESPECIFICADO <dbl>,
#   NO_APLICA <dbl>, SE_IGNORA <dbl>, OTRA <dbl>, Contributory_System <dbl>,
#   Non_Contributory <dbl>, NONE_NOT_SPECIFIED <dbl>, Otra <dbl>, TOTAL <dbl>,
#   ent_mun <glue>

Rows: 20
Columns: 4
$ fecha_nacimiento   <date> 2011-01-01, 2011-05-01, 2011-05-01, 2011-08-01, 20…
$ Congenital_Anomaly <dbl> 500, 417, 621, 206, 398, 3972, 154, 468, 1923, 209,…
$ None_Anomaly       <dbl> 8545, 3898, 8473, 2101, 6180, 20367, 7568, 6301, 14…
$ entidad            <dbl> 2, 1, 5, 3, 22, 14, 25, 27, 19, 32, 9, 23, 32, 5, 2…
# A tibble: 20 × 4
   fecha_nacimiento Congenital_Anomaly None_Anomaly entidad
   <date>                        <dbl>        <dbl>   <dbl>
 1 2011-01-01                      500         8545       2
 2 2011-05-01                      417         3898       1
 3 2011-05-01                      621         8473       5
 4 2011-08-01                      206         2101       3
 5 2011-11-01                      398         6180      22
 6 2013-03-01                     3972        20367      14
 7 2013-06-01                      154         7568      25
 8 2014-01-01                      468         6301      27
 9 2014-10-01                     1923        14837      19
10 2015-04-01                      209         4848      32
11 2015-05-01                     1540        19774       9
12 2015-10-01                      328         4920      23
13 2015-10-01                      256         4861      32
14 2016-02-01                      914         7960       5
15 2016-04-01                      374         5633      26
16 2016-12-01                      873         6621      26
17 2017-08-01                      829        12096      20
18 2018-10-01                      477         8648       2
19 2018-10-01                      410        11697      20
20 2019-02-01                      303         9732      20
Rows: 20
Columns: 4
$ fecha_nacimiento   <date> 2011-01-01, 2011-03-01, 2011-05-01, 2012-01-01, 20…
$ Congenital_Anomaly <dbl> 8, 1, 1, 2, 4, 0, 0, 0, 0, 1, 0, 2, 2, 1, 0, 13, 1,…
$ None_Anomaly       <dbl> 26, 50, 20, 34, 42, 24, 26, 117, 60, 204, 1, 47, 13…
$ ent_mun            <glue> "20_298", "14_088", "14_011", "12_008", "08_035", …
# A tibble: 20 × 4
   fecha_nacimiento Congenital_Anomaly None_Anomaly ent_mun
   <date>                        <dbl>        <dbl> <glue> 
 1 2011-01-01                        8           26 20_298 
 2 2011-03-01                        1           50 14_088 
 3 2011-05-01                        1           20 14_011 
 4 2012-01-01                        2           34 12_008 
 5 2012-05-01                        4           42 08_035 
 6 2012-12-01                        0           24 06_006 
 7 2013-01-01                        0           26 11_010 
 8 2013-05-01                        0          117 20_073 
 9 2015-07-01                        0           60 30_062 
10 2015-12-01                        1          204 32_042 
11 2016-04-01                        0            1 20_268 
12 2017-08-01                        2           47 13_005 
13 2017-08-01                        2          134 16_083 
14 2018-02-01                        1           40 20_375 
15 2018-02-01                        0            6 19_030 
16 2018-03-01                       13          400 09_004 
17 2018-03-01                        1           52 07_054 
18 2018-06-01                        0           17 26_004 
19 2018-08-01                        3            4 08_026 
20 2019-01-01                        4           52 30_006 

Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-01-01, 2012-05-01, 2012-09-01, 20…
$ valoracion_apgar_nac_vivo_suma <dbl> 42377, 182801, 128511, 80015, 88786, 20…
$ Births_From_Apgar_Valuation    <dbl> 4779, 20581, 14936, 8994, 10057, 2258, …
$ entidad                        <dbl> 17, 30, 7, 5, 27, 6, 4, 30, 8, 21, 14, …
# A tibble: 20 × 4
   fecha_nacimiento valoracion_apgar_nac_vivo_s…¹ Births_From_Apgar_Va…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-01-01                               42377                   4779      17
 2 2012-05-01                              182801                  20581      30
 3 2012-09-01                              128511                  14936       7
 4 2013-03-01                               80015                   8994       5
 5 2013-09-01                               88786                  10057      27
 6 2013-12-01                               20234                   2258       6
 7 2014-10-01                               27640                   3160       4
 8 2015-06-01                              190891                  21523      30
 9 2015-08-01                              102371                  11529       8
10 2016-06-01                              177218                  19990      21
11 2016-11-01                              208622                  23396      14
12 2017-02-01                               47107                   5326      10
13 2017-06-01                               79436                   8932      28
14 2018-04-01                               50163                   5684      26
15 2018-04-01                               66369                   7527       2
16 2018-04-01                               45283                   5091      10
17 2018-10-01                              107325                  12077      20
18 2018-11-01                              173626                  19505      21
19 2019-02-01                               23691                   2678      18
20 2019-04-01                               72533                   8208       5
# ℹ abbreviated names: ¹​valoracion_apgar_nac_vivo_suma,
#   ²​Births_From_Apgar_Valuation
Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-01-01, 2011-09-01, 2011-11-01, 20…
$ valoracion_apgar_nac_vivo_suma <dbl> 279, 689, 99, 45, 315, 541, 3653, 1807,…
$ Births_From_Apgar_Valuation    <dbl> 32, 79, 11, 6, 36, 63, 425, 204, 219, 1…
$ ent_mun                        <glue> "10_015", "15_068", "20_024", "31_014"…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_apgar_nac_vivo_s…¹ Births_From_Apgar_Va…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-01-01                                 279                     32 10_015 
 2 2011-09-01                                 689                     79 15_068 
 3 2011-11-01                                  99                     11 20_024 
 4 2012-09-01                                  45                      6 31_014 
 5 2012-11-01                                 315                     36 20_150 
 6 2013-06-01                                 541                     63 24_058 
 7 2014-06-01                                3653                    425 15_124 
 8 2014-07-01                                1807                    204 11_044 
 9 2014-10-01                                1950                    219 16_088 
10 2015-02-01                                  82                     10 19_001 
11 2015-06-01                                 107                     12 20_213 
12 2015-08-01                                 297                     34 21_023 
13 2015-10-01                                  18                      2 20_022 
14 2015-12-01                                5926                    668 16_108 
15 2016-10-01                                1083                    121 21_051 
16 2016-12-01                               11915                   1313 25_001 
17 2017-05-01                                1084                    127 14_030 
18 2018-05-01                                  37                      4 31_081 
19 2018-06-01                                  89                     10 13_047 
20 2019-02-01                                   9                      1 20_199 
# ℹ abbreviated names: ¹​valoracion_apgar_nac_vivo_suma,
#   ²​Births_From_Apgar_Valuation

Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-03-01, 2011-11-01, 2012-07-01…
$ valoracion_silverman_nac_vivo_suma <dbl> 1907, 456, 3351, 1469, 1190, 2490, …
$ Births_From_Silverman_Valuation    <dbl> 4146, 2330, 22031, 9687, 8489, 1020…
$ entidad                            <dbl> 1, 6, 21, 2, 13, 8, 3, 15, 4, 24, 1…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_silverman_nac_vi…¹ Births_From_Silverma…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-03-01                                1907                   4146       1
 2 2011-11-01                                 456                   2330       6
 3 2012-07-01                                3351                  22031      21
 4 2012-11-01                                1469                   9687       2
 5 2013-03-01                                1190                   8489      13
 6 2013-05-01                                2490                  10201       8
 7 2014-02-01                                 396                   1957       3
 8 2014-03-01                               10074                  47719      15
 9 2015-06-01                                 862                   2828       4
10 2016-04-01                                1349                   7082      24
11 2016-08-01                                2049                  11018      12
12 2017-02-01                                5080                   4203      23
13 2017-10-01                                2592                   9411      25
14 2018-07-01                                6478                  23343      14
15 2018-08-01                                2731                   9806       5
16 2018-08-01                                 954                   4526       1
17 2018-12-01                                1133                   3222      18
18 2019-02-01                                1615                   4285      32
19 2019-04-01                                1392                   8953      12
20 2019-06-01                                 628                   3628      29
# ℹ abbreviated names: ¹​valoracion_silverman_nac_vivo_suma,
#   ²​Births_From_Silverman_Valuation
Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-01-01, 2011-05-01, 2012-03-01…
$ valoracion_silverman_nac_vivo_suma <dbl> 0, 0, 44, 60, 1, 4, 0, 0, 40, 45, 2…
$ Births_From_Silverman_Valuation    <dbl> 3, 1, 34, 22, 8, 8, 46, 11, 225, 58…
$ ent_mun                            <glue> "20_569", "20_029", "16_070", "07_…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_silverman_nac_vi…¹ Births_From_Silverma…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-01-01                                   0                      3 20_569 
 2 2011-05-01                                   0                      1 20_029 
 3 2012-03-01                                  44                     34 16_070 
 4 2012-05-01                                  60                     22 07_110 
 5 2012-07-01                                   1                      8 20_084 
 6 2012-09-01                                   4                      8 11_036 
 7 2013-03-01                                   0                     46 30_081 
 8 2013-05-01                                   0                     11 20_048 
 9 2014-02-01                                  40                    225 13_063 
10 2015-04-01                                  45                     58 23_007 
11 2016-05-01                                   2                     36 30_020 
12 2016-10-01                                   0                      5 20_279 
13 2016-12-01                                   0                      2 19_035 
14 2017-08-01                                  28                    214 20_482 
15 2018-02-01                                   0                      3 20_081 
16 2018-02-01                                  10                     88 08_036 
17 2018-05-01                                  49                    155 14_066 
18 2018-05-01                                   7                     22 30_198 
19 2019-01-01                                  15                     36 30_209 
20 2019-02-01                                   1                     11 20_497 
# ℹ abbreviated names: ¹​valoracion_silverman_nac_vivo_suma,
#   ²​Births_From_Silverman_Valuation

Rows: 20
Columns: 4
$ fecha_nacimiento           <date> 2011-03-01, 2011-05-01, 2011-07-01, 2011-0…
$ talla_nac_vivo_ajust_suma  <dbl> 2359896, 312567, 422469, 1359924, 554602, 8…
$ Births_From_Talla_Ajustada <dbl> 47527, 6268, 8316, 27110, 10973, 16318, 949…
$ entidad                    <dbl> 15, 22, 26, 14, 8, 16, 28, 3, 20, 4, 18, 7,…
# A tibble: 20 × 4
   fecha_nacimiento talla_nac_vivo_ajust_suma Births_From_Talla_Ajustada entidad
   <date>                               <dbl>                      <dbl>   <dbl>
 1 2011-03-01                         2359896                      47527      15
 2 2011-05-01                          312567                       6268      22
 3 2011-07-01                          422469                       8316      26
 4 2011-09-01                         1359924                      27110      14
 5 2012-07-01                          554602                      10973       8
 6 2012-08-01                          814702                      16318      16
 7 2013-06-01                          475385                       9494      28
 8 2014-06-01                           93041                       1842       3
 9 2015-06-01                          586640                      11819      20
10 2015-06-01                          137821                       2787       4
11 2015-12-01                          172504                       3439      18
12 2016-07-01                          741174                      14952       7
13 2016-08-01                          625425                      12577      20
14 2016-10-01                          104091                       2061       3
15 2017-08-01                          541880                      10827      28
16 2018-08-01                          619473                      12495      20
17 2018-10-01                          208229                       4205       1
18 2018-12-01                          191948                       3864      29
19 2019-01-01                          769249                      15600       9
20 2019-06-01                          416818                       8319       5
Rows: 20
Columns: 4
$ fecha_nacimiento           <date> 2011-01-01, 2011-01-01, 2012-01-01, 2012-0…
$ talla_nac_vivo_ajust_suma  <dbl> 128648, 1241, 15707, 143928, 2413, 5519, 34…
$ Births_From_Talla_Ajustada <dbl> 2606, 25, 317, 2892, 48, 110, 7, 38, 11, 43…
$ ent_mun                    <glue> "15_057", "20_136", "16_066", "22_014", "1…
# A tibble: 20 × 4
   fecha_nacimiento talla_nac_vivo_ajust_suma Births_From_Talla_Ajustada ent_mun
   <date>                               <dbl>                      <dbl> <glue> 
 1 2011-01-01                          128648                       2606 15_057 
 2 2011-01-01                            1241                         25 20_136 
 3 2012-01-01                           15707                        317 16_066 
 4 2012-03-01                          143928                       2892 22_014 
 5 2012-05-01                            2413                         48 13_011 
 6 2012-05-01                            5519                        110 30_210 
 7 2013-12-01                             342                          7 20_490 
 8 2014-04-01                            1910                         38 16_013 
 9 2014-04-01                             548                         11 20_202 
10 2014-05-01                            2159                         43 14_029 
11 2014-11-01                           11223                        228 14_008 
12 2015-09-01                           25757                        519 17_011 
13 2015-09-01                            2120                         43 30_120 
14 2016-08-01                            1354                         27 29_058 
15 2017-02-01                              97                          2 20_317 
16 2017-12-01                           15425                        306 24_037 
17 2018-02-01                            1303                         26 21_103 
18 2018-08-01                            7551                        152 22_007 
19 2019-02-01                             303                          6 20_251 
20 2019-06-01                             386                          8 20_063 

Rows: 20
Columns: 4
$ fecha_nacimiento          <date> 2011-09-01, 2012-07-01, 2012-07-01, 2012-10…
$ peso_nac_vivo_ajust_suma  <dbl> 45770622, 71000457, 148392392, 26003381, 457…
$ Births_From_Peso_Ajustado <dbl> 14478, 23227, 48533, 7898, 14520, 5650, 9992…
$ entidad                   <dbl> 7, 9, 15, 26, 16, 10, 12, 21, 15, 20, 20, 11…
# A tibble: 20 × 4
   fecha_nacimiento peso_nac_vivo_ajust_suma Births_From_Peso_Ajustado entidad
   <date>                              <dbl>                     <dbl>   <dbl>
 1 2011-09-01                       45770622                     14478       7
 2 2012-07-01                       71000457                     23227       9
 3 2012-07-01                      148392392                     48533      15
 4 2012-10-01                       26003381                      7898      26
 5 2013-04-01                       45793245                     14520      16
 6 2013-06-01                       17948017                      5650      10
 7 2013-07-01                       31303896                      9992      12
 8 2014-04-01                       59344054                     19211      21
 9 2015-02-01                      130620914                     42689      15
10 2015-04-01                       34918052                     11032      20
11 2015-12-01                       34388082                     10875      20
12 2017-07-01                       60898785                     19595      11
13 2018-02-01                       28505646                      9047      12
14 2018-07-01                       61343766                     19350      30
15 2018-10-01                        6642553                      2036       3
16 2018-10-01                       14346509                      4588      32
17 2018-12-01                       12100696                      3780      23
18 2019-02-01                       10333342                      3354      29
19 2019-04-01                       23491278                      7295      28
20 2019-10-01                       26054079                      8029       2
Rows: 20
Columns: 4
$ fecha_nacimiento          <date> 2011-05-01, 2011-09-01, 2012-07-01, 2012-07…
$ peso_nac_vivo_ajust_suma  <dbl> 105993, 151480, 51803, 1601815, 35400, 15754…
$ Births_From_Peso_Ajustado <dbl> 33, 48, 17, 494, 12, 49, 374, 80, 53, 111, 3…
$ ent_mun                   <glue> "13_032", "12_002", "07_026", "08_021", "32…
# A tibble: 20 × 4
   fecha_nacimiento peso_nac_vivo_ajust_suma Births_From_Peso_Ajustado ent_mun
   <date>                              <dbl>                     <dbl> <glue> 
 1 2011-05-01                         105993                        33 13_032 
 2 2011-09-01                         151480                        48 12_002 
 3 2012-07-01                          51803                        17 07_026 
 4 2012-07-01                        1601815                       494 08_021 
 5 2013-08-01                          35400                        12 32_021 
 6 2013-11-01                         157547                        49 12_039 
 7 2014-01-01                        1188747                       374 27_006 
 8 2014-06-01                         255775                        80 24_053 
 9 2014-08-01                         170616                        53 16_104 
10 2014-11-01                         345396                       111 07_030 
11 2015-04-01                         120160                        36 08_035 
12 2016-01-01                         653530                       214 07_096 
13 2016-06-01                          33920                        12 20_532 
14 2016-12-01                          73243                        24 20_537 
15 2017-03-01                         161873                        52 07_011 
16 2017-04-01                         428177                       134 12_011 
17 2018-06-01                         829185                       263 21_208 
18 2018-06-01                          25260                         8 20_071 
19 2018-10-01                         335280                       101 18_001 
20 2018-11-01                          57204                        19 14_111 

Rows: 20
Columns: 4
$ fecha_nacimiento       <date> 2011-09-01, 2012-01-01, 2012-06-01, 2012-07-01…
$ edad_madre_suma        <dbl> 164428, 232962, 49512, 281476, 374697, 134816, …
$ Births_From_edad_madre <dbl> 6480, 9265, 1961, 11431, 15059, 5281, 12043, 11…
$ entidad                <dbl> 31, 28, 3, 8, 7, 32, 20, 12, 23, 20, 7, 8, 18, …
# A tibble: 20 × 4
   fecha_nacimiento edad_madre_suma Births_From_edad_madre entidad
   <date>                     <dbl>                  <dbl>   <dbl>
 1 2011-09-01                164428                   6480      31
 2 2012-01-01                232962                   9265      28
 3 2012-06-01                 49512                   1961       3
 4 2012-07-01                281476                  11431       8
 5 2013-03-01                374697                  15059       7
 6 2013-06-01                134816                   5281      32
 7 2013-12-01                300712                  12043      20
 8 2015-08-01                282622                  11354      12
 9 2015-10-01                133319                   5255      23
10 2015-10-01                318289                  12555      20
11 2016-03-01                380669                  15198       7
12 2016-08-01                280940                  11369       8
13 2016-10-01                 96973                   3808      18
14 2016-12-01                370752                  14648      16
15 2017-11-01                356533                  14204       7
16 2017-12-01                135162                   5395      10
17 2018-01-01                466457                  18572      21
18 2018-02-01                117046                   4551      32
19 2018-02-01                336688                  13253      16
20 2019-02-01                176052                   6766      24
Rows: 20
Columns: 4
$ fecha_nacimiento       <date> 2011-07-01, 2011-09-01, 2012-01-01, 2012-05-01…
$ edad_madre_suma        <dbl> 141, 11039, 1001, 1880, 1047, 3591, 353, 10322,…
$ Births_From_edad_madre <dbl> 5, 427, 39, 76, 45, 131, 16, 419, 36, 34, 6, 28…
$ ent_mun                <glue> "20_252", "11_002", "30_196", "24_057", "12_01…
# A tibble: 20 × 4
   fecha_nacimiento edad_madre_suma Births_From_edad_madre ent_mun
   <date>                     <dbl>                  <dbl> <glue> 
 1 2011-07-01                   141                      5 20_252 
 2 2011-09-01                 11039                    427 11_002 
 3 2012-01-01                  1001                     39 30_196 
 4 2012-05-01                  1880                     76 24_057 
 5 2012-11-01                  1047                     45 12_019 
 6 2013-09-01                  3591                    131 15_999 
 7 2013-12-01                   353                     16 20_213 
 8 2014-02-01                 10322                    419 30_124 
 9 2014-08-01                   900                     36 16_086 
10 2015-09-01                   893                     34 30_180 
11 2016-04-01                   156                      6 28_020 
12 2016-08-01                   665                     28 21_025 
13 2016-08-01                   128                      4 20_024 
14 2016-11-01                 24440                    980 27_002 
15 2017-01-01                  1347                     52 30_051 
16 2017-09-01                 12045                    478 30_124 
17 2018-01-01                  1228                     52 30_049 
18 2018-08-01                   243                     10 15_069 
19 2019-05-01                   255                     10 07_033 
20 2019-09-01                     0                      0 09_888 

Rows: 20
Columns: 9
$ fecha_nacimiento                <date> 2011-11-01, 2012-07-01, 2013-02-01, 2…
$ LUGAR_NAC_SECRETARIA_DE_SALUD   <dbl> 2535, 4449, 6935, 3366, 11066, 3728, 2…
$ LUGAR_NAC_UNIDAD_MEDICA_PRIVADA <dbl> 792, 2034, 3756, 1250, 3860, 1543, 120…
$ LUGAR_NAC_IMSS                  <dbl> 1200, 3286, 2068, 1525, 3912, 1709, 86…
$ LUGAR_NAC_IMSS_OPORTUNIDADES    <dbl> 2, 251, 1561, 4, 2104, 0, 96, 723, 465…
$ LUGAR_NAC_OTRA_UNIDAD_PUBLICA   <dbl> 4, 200, 16, 7, 95, 9, 3039, 6, 9, 0, 0…
$ LUGAR_NAC_ISSSTE                <dbl> 68, 98, 322, 65, 294, 74, 618, 143, 15…
$ Births_From_lugar_nacimiento    <dbl> 4614, 10404, 14942, 6240, 22870, 7098,…
$ entidad                         <dbl> 1, 2, 16, 22, 30, 22, 15, 32, 8, 4, 23…
# A tibble: 20 × 9
   fecha_nacimiento LUGAR_NAC_SECRETARIA…¹ LUGAR_NAC_UNIDAD_MED…² LUGAR_NAC_IMSS
   <date>                            <dbl>                  <dbl>          <dbl>
 1 2011-11-01                         2535                    792           1200
 2 2012-07-01                         4449                   2034           3286
 3 2013-02-01                         6935                   3756           2068
 4 2013-02-01                         3366                   1250           1525
 5 2013-06-01                        11066                   3860           3912
 6 2013-08-01                         3728                   1543           1709
 7 2013-11-01                        23411                  12064           8691
 8 2013-12-01                         2841                    400            984
 9 2014-02-01                         2942                   2618           2997
10 2014-06-01                         1800                    199            504
11 2015-04-01                         2122                    436           1408
12 2015-04-01                         3842                   1100           1357
13 2015-09-01                        12260                   4295           4183
14 2015-10-01                         2826                    602           1652
15 2016-12-01                         3451                   2021           3063
16 2017-08-01                         2917                    704           1057
17 2018-08-01                         4726                   2391           2667
18 2018-08-01                         1751                    242            553
19 2018-09-01                         9014                   8174           7114
20 2019-08-01                         2108                   1053            643
# ℹ abbreviated names: ¹​LUGAR_NAC_SECRETARIA_DE_SALUD,
#   ²​LUGAR_NAC_UNIDAD_MEDICA_PRIVADA
# ℹ 5 more variables: LUGAR_NAC_IMSS_OPORTUNIDADES <dbl>,
#   LUGAR_NAC_OTRA_UNIDAD_PUBLICA <dbl>, LUGAR_NAC_ISSSTE <dbl>,
#   Births_From_lugar_nacimiento <dbl>, entidad <dbl>
Rows: 20
Columns: 9
$ fecha_nacimiento                <date> 2011-05-01, 2011-07-01, 2011-11-01, 2…
$ LUGAR_NAC_SECRETARIA_DE_SALUD   <dbl> 6, 141, 8, 0, 510, 5, 130, 12, 19, 66,…
$ LUGAR_NAC_UNIDAD_MEDICA_PRIVADA <dbl> 7, 36, 0, 14, 71, 3, 164, 5, 13, 39, 3…
$ LUGAR_NAC_IMSS                  <dbl> 0, 30, 4, 0, 180, 1, 33, 6, 5, 15, 0, …
$ LUGAR_NAC_IMSS_OPORTUNIDADES    <dbl> 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 11, 30, …
$ LUGAR_NAC_OTRA_UNIDAD_PUBLICA   <dbl> 0, 0, 2, 0, 5, 0, 10, 0, 0, 0, 0, 1, 0…
$ LUGAR_NAC_ISSSTE                <dbl> 0, 12, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0…
$ Births_From_lugar_nacimiento    <dbl> 16, 222, 14, 17, 902, 9, 400, 23, 39, …
$ ent_mun                         <glue> "21_150", "17_017", "19_029", "21_098…
# A tibble: 20 × 9
   fecha_nacimiento LUGAR_NAC_SECRETARIA…¹ LUGAR_NAC_UNIDAD_MED…² LUGAR_NAC_IMSS
   <date>                            <dbl>                  <dbl>          <dbl>
 1 2011-05-01                            6                      7              0
 2 2011-07-01                          141                     36             30
 3 2011-11-01                            8                      0              4
 4 2012-01-01                            0                     14              0
 5 2012-03-01                          510                     71            180
 6 2012-03-01                            5                      3              1
 7 2012-07-01                          130                    164             33
 8 2013-01-01                           12                      5              6
 9 2013-01-01                           19                     13              5
10 2013-07-01                           66                     39             15
11 2014-06-01                            0                      3              0
12 2015-03-01                          209                      4             10
13 2015-08-01                            0                      0              0
14 2017-02-01                           69                     98              3
15 2017-06-01                          130                     15              9
16 2017-09-01                           17                      1              1
17 2018-01-01                            1                     16              1
18 2018-02-01                           22                      1              2
19 2018-10-01                            1                      2              1
20 2018-11-01                            4                      5             21
# ℹ abbreviated names: ¹​LUGAR_NAC_SECRETARIA_DE_SALUD,
#   ²​LUGAR_NAC_UNIDAD_MEDICA_PRIVADA
# ℹ 5 more variables: LUGAR_NAC_IMSS_OPORTUNIDADES <dbl>,
#   LUGAR_NAC_OTRA_UNIDAD_PUBLICA <dbl>, LUGAR_NAC_ISSSTE <dbl>,
#   Births_From_lugar_nacimiento <dbl>, ent_mun <glue>

Rows: 20
Columns: 5
$ fecha_nacimiento             <date> 2013-02-01, 2013-08-01, 2013-11-01, 2014…
$ Madre_Sobrevivio_SI          <dbl> 10137, 2336, 15552, 8864, 4709, 7039, 278…
$ Madre_Sobrevivio_NO          <dbl> 2, 0, 0, 1, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0,…
$ Births_From_Madre_Sobrevivio <dbl> 10139, 2336, 15552, 8865, 4709, 7039, 278…
$ entidad                      <dbl> 12, 3, 16, 2, 23, 31, 14, 21, 30, 12, 17,…
# A tibble: 20 × 5
   fecha_nacimiento Madre_Sobrevivio_SI Madre_Sobrevivio_NO
   <date>                         <dbl>               <dbl>
 1 2013-02-01                     10137                   2
 2 2013-08-01                      2336                   0
 3 2013-11-01                     15552                   0
 4 2014-01-01                      8864                   1
 5 2014-06-01                      4709                   0
 6 2014-09-01                      7039                   0
 7 2014-09-01                     27837                   1
 8 2015-09-01                     21750                   0
 9 2015-11-01                     21315                   3
10 2016-02-01                      9701                   0
11 2016-05-01                      5216                   0
12 2016-06-01                      7100                   0
13 2016-08-01                     10172                   0
14 2017-04-01                      5553                   0
15 2018-01-01                     18574                   0
16 2018-08-01                      8925                   0
17 2018-08-01                      1965                   0
18 2018-09-01                      6702                   1
19 2019-07-01                      4655                   0
20 2019-07-01                     18397                   0
# ℹ 2 more variables: Births_From_Madre_Sobrevivio <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento             <date> 2013-08-01, 2013-11-01, 2014-04-01, 2015…
$ Madre_Sobrevivio_SI          <dbl> 169, 404, 88, 51, 4, 4, 1, 10, 116, 43, 1…
$ Madre_Sobrevivio_NO          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ Births_From_Madre_Sobrevivio <dbl> 169, 404, 88, 51, 4, 4, 1, 10, 116, 43, 1…
$ ent_mun                      <glue> "32_020", "15_124", "21_179", "23_007", …
# A tibble: 20 × 5
   fecha_nacimiento Madre_Sobrevivio_SI Madre_Sobrevivio_NO
   <date>                         <dbl>               <dbl>
 1 2013-08-01                       169                   0
 2 2013-11-01                       404                   0
 3 2014-04-01                        88                   0
 4 2015-02-01                        51                   0
 5 2015-04-01                         4                   0
 6 2015-04-01                         4                   0
 7 2015-06-01                         1                   0
 8 2015-08-01                        10                   0
 9 2015-10-01                       116                   0
10 2016-06-01                        43                   0
11 2016-10-01                       139                   0
12 2017-04-01                         0                   0
13 2017-08-01                       128                   0
14 2017-08-01                        12                   0
15 2018-02-01                       118                   0
16 2018-08-01                        58                   0
17 2018-09-01                        31                   0
18 2018-10-01                       162                   0
19 2018-10-01                       312                   0
20 2019-07-01                       826                   0
# ℹ 2 more variables: Births_From_Madre_Sobrevivio <dbl>, ent_mun <glue>

Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2011-05-01, 2011-07-01, 2012-10-01, 2013-05-01,…
$ SI_Recibio_Vitamin_k  <dbl> 5225, 17721, 2251, 4178, 37876, 20362, 6838, 166…
$ NO_Recibio_Vitamin_k  <dbl> 563, 2589, 63, 78, 6719, 2955, 233, 55, 89, 4388…
$ Births_From_Vitamin_k <dbl> 5788, 20310, 2314, 4256, 44595, 23317, 7071, 171…
$ entidad               <dbl> 26, 11, 3, 1, 15, 14, 25, 3, 18, 15, 7, 2, 29, 6…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2011-05-01                       5225                  563
 2 2011-07-01                      17721                 2589
 3 2012-10-01                       2251                   63
 4 2013-05-01                       4178                   78
 5 2014-01-01                      37876                 6719
 6 2015-05-01                      20362                 2955
 7 2016-06-01                       6838                  233
 8 2016-06-01                       1660                   55
 9 2017-02-01                       2862                   89
10 2017-06-01                      40816                 4388
11 2017-11-01                      13513                  943
12 2018-02-01                       7281                  507
13 2018-10-01                       3945                  105
14 2018-10-01                       1954                   30
15 2018-12-01                       7545                  476
16 2018-12-01                       7545                  476
17 2019-04-01                       3679                   85
18 2019-08-01                       3316                   51
19 2019-08-01                      38182                 2817
20 2019-10-01                       6812                  223
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2012-06-01, 2012-12-01, 2013-05-01, 2013-08-01,…
$ SI_Recibio_Vitamin_k  <dbl> 1802, 13504, 5301, 2239, 7104, 9919, 5023, 9269,…
$ NO_Recibio_Vitamin_k  <dbl> 67, 778, 285, 82, 500, 721, 211, 865, 197, 3263,…
$ Births_From_Vitamin_k <dbl> 1869, 14282, 5586, 2321, 7604, 10640, 5234, 1013…
$ entidad               <dbl> 6, 16, 17, 3, 24, 12, 17, 12, 2, 14, 11, 19, 23,…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2012-06-01                       1802                   67
 2 2012-12-01                      13504                  778
 3 2013-05-01                       5301                  285
 4 2013-08-01                       2239                   82
 5 2013-10-01                       7104                  500
 6 2013-11-01                       9919                  721
 7 2013-11-01                       5023                  211
 8 2014-02-01                       9269                  865
 9 2014-07-01                       9820                  197
10 2015-07-01                      21353                 3263
11 2015-11-01                      17843                 1184
12 2016-06-01                       7530                 7804
13 2016-10-01                       4992                  248
14 2017-02-01                      10210                  545
15 2017-04-01                       1649                   36
16 2017-10-01                       4010                  126
17 2018-06-01                       4291                  625
18 2019-07-01                      15928                  955
19 2019-10-01                       6198                   64
20 2019-11-01                      17315                  847
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2011-11-01, 2011-11-01, 2012-08-01, 2012-12-01,…
$ SI_Recibio_Vitamin_k  <dbl> 20, 165, 19, 40, 12, 7, 4, 22, 190, 6, 1737, 10,…
$ NO_Recibio_Vitamin_k  <dbl> 5, 16, 3, 1, 4, 0, 0, 2, 4, 0, 146, 1, 0, 0, 0, …
$ Births_From_Vitamin_k <dbl> 25, 181, 22, 41, 16, 7, 4, 24, 194, 6, 1883, 11,…
$ ent_mun               <glue> "12_080", "07_057", "12_016", "24_018", "20_213…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2011-11-01                         20                    5
 2 2011-11-01                        165                   16
 3 2012-08-01                         19                    3
 4 2012-12-01                         40                    1
 5 2013-05-01                         12                    4
 6 2013-06-01                          7                    0
 7 2013-12-01                          4                    0
 8 2014-07-01                         22                    2
 9 2015-02-01                        190                    4
10 2015-06-01                          6                    0
11 2016-01-01                       1737                  146
12 2016-03-01                         10                    1
13 2016-10-01                         16                    0
14 2016-10-01                          1                    0
15 2016-10-01                         27                    0
16 2017-07-01                         10                    0
17 2017-08-01                          1                    0
18 2018-06-01                         24                    1
19 2018-10-01                          0                    0
20 2018-12-01                         23                    0
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, ent_mun <glue>
Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2012-11-01, 2013-01-01, 2013-01-01, 2013-09-01,…
$ SI_Recibio_Vitamin_k  <dbl> 13, 4, 11, 9, 65, 11, 0, 50, 8, 46, 6, 31, 1, 64…
$ NO_Recibio_Vitamin_k  <dbl> 1, 0, 0, 5, 4, 1, 0, 4, 1, 32, 1, 0, 0, 15, 2, 7…
$ Births_From_Vitamin_k <dbl> 14, 4, 11, 14, 69, 12, 0, 54, 9, 78, 7, 31, 1, 7…
$ ent_mun               <glue> "20_208", "31_103", "32_046", "05_008", "08_048…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2012-11-01                         13                    1
 2 2013-01-01                          4                    0
 3 2013-01-01                         11                    0
 4 2013-09-01                          9                    5
 5 2013-10-01                         65                    4
 6 2013-12-01                         11                    1
 7 2014-02-01                          0                    0
 8 2014-12-01                         50                    4
 9 2015-06-01                          8                    1
10 2015-06-01                         46                   32
11 2015-10-01                          6                    1
12 2017-12-01                         31                    0
13 2018-02-01                          1                    0
14 2018-02-01                         64                   15
15 2018-04-01                         65                    2
16 2018-06-01                        147                    7
17 2018-08-01                         13                    0
18 2019-04-01                          5                    0
19 2019-09-01                          3                    1
20 2019-10-01                         54                   12
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, ent_mun <glue>