Periodos Trimestrales Naturales

##La estructura del archivo: 1.- Diferencia entre diferentes efectos fijos (fecha_nac natural, año nacimiento + mes nacimiento, sin efecto fijo de tiempo) Son las primeras 6 graficas (Las primeras 2 son sin efectos fijos de tiempo, las siguientes 2 son con efectos fijos de fecha de nacimiento natural, las ultimas 2 son con efectos fijos de año y mes de nacimiento)

2.- A partir de la 7ma grafica, se muestran por cada uno de los outcomes relevantes del estudio: sus grafica de event study (para identificar los ciclos politicos electorales), después las gráficas de tendencia (para ver que no se vean datos raros) y por ultimo una muestra de 20 renglones de la base usada para las regresiones (para ver que no se vean variables raras o NAs incorrectamente).

Diferencias entre diferentes efectors fijos (fecha_nac natural, año nacimiento + mes nacimiento, sin efecto fijo de tiempo)

Aqui comienzan las gráficas relevantes

Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-01-01, 2011-04-01, 2011-07-01, 20…
$ Deaths_NeoNatal_INEGI          <dbl> 100, 39, 67, 862, 76, 228, 68, 143, 38,…
$ Births_From_Mortality_NeoNatal <dbl> 19118, 4757, 8573, 77565, 9880, 24652, …
$ entidad                        <dbl> 19, 18, 17, 15, 31, 16, 17, 27, 4, 26, …
# A tibble: 20 × 4
   fecha_nacimiento Deaths_NeoNatal_INEGI Births_From_Mortality_NeoNatal entidad
   <date>                           <dbl>                          <dbl>   <dbl>
 1 2011-01-01                         100                          19118      19
 2 2011-04-01                          39                           4757      18
 3 2011-07-01                          67                           8573      17
 4 2011-07-01                         862                          77565      15
 5 2011-07-01                          76                           9880      31
 6 2011-08-01                         228                          24652      16
 7 2012-01-01                          68                           8176      17
 8 2012-04-01                         143                          11617      27
 9 2012-12-01                          38                           3751       4
10 2014-03-01                          81                          10422      26
11 2014-06-01                         129                          22836      16
12 2014-12-01                         724                          69808      15
13 2015-10-01                          63                           8068      17
14 2015-10-01                         142                          13370      27
15 2016-03-01                         140                          12521      28
16 2017-06-01                         122                          15406      12
17 2017-09-01                         107                          14355       2
18 2018-06-01                          55                           7251      32
19 2018-09-01                         199                          25217      19
20 2019-03-01                         136                          14313      12
Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-01-01, 2011-07-01, 2012-07-01, 20…
$ Deaths_NeoNatal_INEGI          <dbl> 0, 0, 0, 2, 1, 1, 1, 1, 0, 15, 0, 0, 0,…
$ Births_From_Mortality_NeoNatal <dbl> 14, 2, 66, 284, 10, 383, 126, 170, 16, …
$ ent_mun                        <glue> "21_021", "20_304", "14_084", "11_046"…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_NeoNatal_INEGI Births_From_Mortality_NeoNatal ent_mun
   <date>                           <dbl>                          <dbl> <glue> 
 1 2011-01-01                           0                             14 21_021 
 2 2011-07-01                           0                              2 20_304 
 3 2012-07-01                           0                             66 14_084 
 4 2014-01-01                           2                            284 11_046 
 5 2014-04-01                           1                             10 31_039 
 6 2014-07-01                           1                            383 14_124 
 7 2014-09-01                           1                            126 12_054 
 8 2015-01-01                           1                            170 11_008 
 9 2015-04-01                           0                             16 07_084 
10 2015-07-01                          15                           1136 07_059 
11 2015-09-01                           0                             12 10_030 
12 2016-06-01                           0                             40 20_261 
13 2016-12-01                           0                              2 20_065 
14 2017-12-01                           0                             31 24_002 
15 2017-12-01                           0                             49 13_068 
16 2018-01-01                           0                             78 21_035 
17 2018-04-01                           0                             29 30_106 
18 2018-06-01                           1                             54 15_027 
19 2018-12-01                           0                             20 20_344 
20 2019-03-01                          37                           3043 15_057 

Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-01-01, 2012-10-01, 2013-01-01…
$ Deaths_Postneonatal_INEGI          <dbl> 22, 53, 47, 18, 42, 89, 47, 30, 57,…
$ Births_From_Mortality_Postneonatal <dbl> 8525, 16224, 10775, 6514, 13235, 24…
$ entidad                            <dbl> 10, 28, 27, 1, 13, 19, 28, 23, 26, …
# A tibble: 20 × 4
   fecha_nacimiento Deaths_Postneonatal_INEGI Births_From_Mortality_Po…¹ entidad
   <date>                               <dbl>                      <dbl>   <dbl>
 1 2011-01-01                              22                       8525      10
 2 2012-10-01                              53                      16224      28
 3 2013-01-01                              47                      10775      27
 4 2013-01-01                              18                       6514       1
 5 2013-06-01                              42                      13235      13
 6 2013-09-01                              89                      24242      19
 7 2013-12-01                              47                      14560      28
 8 2014-09-01                              30                       8295      23
 9 2014-09-01                              57                      13377      26
10 2017-03-01                              26                       9540      26
11 2017-03-01                              54                      20944      19
12 2017-07-01                              33                       8085      17
13 2017-12-01                              63                      20672      16
14 2017-12-01                              25                       5828      29
15 2018-03-01                              16                       4133      18
16 2018-12-01                              62                      13064       8
17 2018-12-01                              11                       3136       4
18 2019-03-01                              64                      19614      19
19 2019-06-01                              65                      13865       8
20 2019-07-01                              35                       8920      31
# ℹ abbreviated name: ¹​Births_From_Mortality_Postneonatal
Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-07-01, 2012-01-01, 2012-04-01…
$ Deaths_Postneonatal_INEGI          <dbl> 1, 5, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1,…
$ Births_From_Mortality_Postneonatal <dbl> 252, 1643, 71, 3, 194, 38, 59, 1132…
$ ent_mun                            <glue> "10_001", "10_007", "29_001", "31_…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_Postneonatal_INEGI Births_From_Mortality_Po…¹ ent_mun
   <date>                               <dbl>                      <dbl> <glue> 
 1 2011-07-01                               1                        252 10_001 
 2 2012-01-01                               5                       1643 10_007 
 3 2012-04-01                               0                         71 29_001 
 4 2012-07-01                               0                          3 31_077 
 5 2012-10-01                               0                        194 05_032 
 6 2013-01-01                               0                         38 32_012 
 7 2013-06-01                               0                         59 29_038 
 8 2014-03-01                               2                       1132 23_004 
 9 2014-03-01                               0                         59 21_999 
10 2015-09-01                               0                         36 21_125 
11 2016-03-01                               2                        226 32_005 
12 2016-04-01                               1                        162 30_138 
13 2016-07-01                               1                        723 11_033 
14 2017-03-01                               0                         34 29_009 
15 2017-10-01                               0                         96 30_211 
16 2018-03-01                               0                         18 21_113 
17 2018-04-01                               0                         26 21_204 
18 2018-09-01                               0                         87 13_058 
19 2018-12-01                               7                       1200 22_016 
20 2019-09-01                               4                        483 08_032 
# ℹ abbreviated name: ¹​Births_From_Mortality_Postneonatal

Rows: 20
Columns: 5
$ fecha_nacimiento                   <date> 2011-04-01, 2011-07-01, 2012-01-01…
$ Deaths_Postneonatal_INEGI          <dbl> 183, 38, 52, 52, 71, 26, 50, 62, 71…
$ Deaths_NeoNatal_INEGI              <dbl> 381, 76, 68, 146, 118, 93, 109, 103…
$ Births_From_Mortality_Postneonatal <dbl> 30634, 9880, 11554, 19482, 12568, 8…
$ entidad                            <dbl> 21, 31, 24, 19, 13, 10, 25, 24, 5, …
# A tibble: 20 × 5
   fecha_nacimiento Deaths_Postneonatal_INEGI Deaths_NeoNatal_INEGI
   <date>                               <dbl>                 <dbl>
 1 2011-04-01                             183                   381
 2 2011-07-01                              38                    76
 3 2012-01-01                              52                    68
 4 2012-01-01                              52                   146
 5 2012-10-01                              71                   118
 6 2013-04-01                              26                    93
 7 2013-09-01                              50                   109
 8 2014-09-01                              62                   103
 9 2014-12-01                              71                   148
10 2015-07-01                             121                   276
11 2016-01-01                             129                   272
12 2016-06-01                              59                   175
13 2016-07-01                             126                   234
14 2016-12-01                              27                    43
15 2017-01-01                             100                   252
16 2018-06-01                             152                   290
17 2018-09-01                              44                   121
18 2019-03-01                              44                   112
19 2019-06-01                              20                    45
20 2019-09-01                              54                   150
# ℹ 2 more variables: Births_From_Mortality_Postneonatal <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento                   <date> 2011-01-01, 2012-01-01, 2012-02-01…
$ Deaths_Postneonatal_INEGI          <dbl> 3, 1, 5, 0, 1, 1, 0, 2, 0, 0, 0, 2,…
$ Deaths_NeoNatal_INEGI              <dbl> 20, 3, 7, 1, 0, 1, 0, 3, 0, 0, 0, 9…
$ Births_From_Mortality_Postneonatal <dbl> 1237, 382, 885, 34, 69, 65, 25, 483…
$ ent_mun                            <glue> "30_039", "05_020", "16_112", "30_…
# A tibble: 20 × 5
   fecha_nacimiento Deaths_Postneonatal_INEGI Deaths_NeoNatal_INEGI
   <date>                               <dbl>                 <dbl>
 1 2011-01-01                               3                    20
 2 2012-01-01                               1                     3
 3 2012-02-01                               5                     7
 4 2012-07-01                               0                     1
 5 2012-10-01                               1                     0
 6 2013-01-01                               1                     1
 7 2013-06-01                               0                     0
 8 2013-07-01                               2                     3
 9 2014-06-01                               0                     0
10 2014-06-01                               0                     0
11 2015-09-01                               0                     0
12 2016-04-01                               2                     9
13 2017-03-01                               0                     0
14 2017-03-01                               0                     2
15 2017-04-01                               1                     2
16 2018-03-01                               0                     0
17 2018-12-01                               0                     0
18 2018-12-01                               0                     0
19 2019-07-01                               0                     6
20 2019-10-01                               0                     0
# ℹ 2 more variables: Births_From_Mortality_Postneonatal <dbl>, ent_mun <glue>

Primera infancia no tiene los datos correctos para los ultimos años ya que no se han terminado de registrar estos datos, por lo que NO se analizara la mortalidad en primera infancia

Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-01-01, 2011-04-01, 2011-07…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 9, 20, 50, 8, 11, 2, 13, 28, 28,…
$ Births_From_Mortality_PrimeraInfancia <dbl> 8525, 15328, 77565, 8573, 18518,…
$ entidad                               <dbl> 10, 8, 15, 17, 28, 3, 5, 11, 11,…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ entidad
   <date>                                  <dbl>                   <dbl>   <dbl>
 1 2011-01-01                                  9                    8525      10
 2 2011-04-01                                 20                   15328       8
 3 2011-07-01                                 50                   77565      15
 4 2011-07-01                                  8                    8573      17
 5 2011-07-01                                 11                   18518      28
 6 2012-02-01                                  2                    2949       3
 7 2012-04-01                                 13                   13327       5
 8 2012-04-01                                 28                   28623      11
 9 2012-07-01                                 28                   32523      11
10 2014-06-01                                  5                    6234      29
11 2014-09-01                                 22                   20182      20
12 2015-04-01                                  9                    8154      31
13 2015-06-01                                 11                   15702       5
14 2015-06-01                                  4                    2965       6
15 2015-12-01                                  7                    8305      10
16 2016-03-01                                  7                    5985      29
17 2016-06-01                                  3                    4058       4
18 2016-10-01                                  8                    9386      31
19 2017-06-01                                 15                   14499      28
20 2017-07-01                                 27                   31441      11
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia
Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-01-01, 2011-10-01, 2012-01…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ Births_From_Mortality_PrimeraInfancia <dbl> 10, 620, 2, 198, 340, 7, 3, 30, …
$ ent_mun                               <glue> "20_367", "21_132", "20_423", "…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ ent_mun
   <date>                                  <dbl>                   <dbl> <glue> 
 1 2011-01-01                                  0                      10 20_367 
 2 2011-10-01                                  0                     620 21_132 
 3 2012-01-01                                  0                       2 20_423 
 4 2013-01-01                                  0                     198 17_003 
 5 2013-04-01                                  0                     340 05_010 
 6 2014-03-01                                  0                       7 20_034 
 7 2014-03-01                                  0                       3 20_132 
 8 2014-06-01                                  0                      30 20_348 
 9 2015-04-01                                  0                      24 14_072 
10 2015-06-01                                  0                       6 08_043 
11 2015-12-01                                  0                     236 20_318 
12 2016-01-01                                  0                      98 17_002 
13 2016-03-01                                  0                      18 20_428 
14 2016-09-01                                  0                     411 16_075 
15 2016-10-01                                  1                     376 21_115 
16 2017-01-01                                  0                      66 30_021 
17 2017-06-01                                  0                      23 21_120 
18 2017-07-01                                  0                      21 31_020 
19 2017-10-01                                  0                    1226 11_027 
20 2017-10-01                                  0                     209 11_008 
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia

Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-01-01, 2012-07-01, 2012-12…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 15, 6, 14, 43, 4, 5, 5, 2, 42, 5…
$ Births_From_Mortality_PrimeraInfancia <dbl> 13251, 8313, 15270, 35857, 2832,…
$ entidad                               <dbl> 25, 32, 12, 14, 3, 29, 3, 23, 30…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ entidad
   <date>                                  <dbl>                   <dbl>   <dbl>
 1 2011-01-01                                 15                   13251      25
 2 2012-07-01                                  6                    8313      32
 3 2012-12-01                                 14                   15270      12
 4 2013-01-01                                 43                   35857      14
 5 2013-02-01                                  4                    2832       3
 6 2013-04-01                                  5                    6399      29
 7 2013-11-01                                  5                    3281       3
 8 2014-03-01                                  2                    6408      23
 9 2014-06-01                                 42                   34395      30
10 2014-07-01                                  5                   13984      27
11 2014-09-01                                 32                   37552      30
12 2014-09-01                                  9                   17433      28
13 2015-06-01                                  2                    6148      29
14 2015-07-01                                 11                   14440      27
15 2015-09-01                                  8                   15826       5
16 2016-03-01                                 33                   30504      21
17 2016-12-01                                 67                   66718      15
18 2016-12-01                                  5                   12502      25
19 2016-12-01                                  6                    4989      18
20 2017-10-01                                  5                   11867      27
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia
Rows: 20
Columns: 4
$ fecha_nacimiento                      <date> 2011-05-01, 2011-07-01, 2011-07…
$ Deaths_PrimeraInfancia_INEGI          <dbl> 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,…
$ Births_From_Mortality_PrimeraInfancia <dbl> 136, 45, 195, 12, 71, 249, 93, 2…
$ ent_mun                               <glue> "16_061", "32_008", "17_030", "…
# A tibble: 20 × 4
   fecha_nacimiento Deaths_PrimeraInfancia_INEGI Births_From_Mortality…¹ ent_mun
   <date>                                  <dbl>                   <dbl> <glue> 
 1 2011-05-01                                  0                     136 16_061 
 2 2011-07-01                                  0                      45 32_008 
 3 2011-07-01                                  1                     195 17_030 
 4 2012-07-01                                  0                      12 20_333 
 5 2013-06-01                                  0                      71 30_093 
 6 2013-07-01                                  0                     249 12_053 
 7 2014-09-01                                  1                      93 08_065 
 8 2014-10-01                                  0                     228 14_094 
 9 2014-12-01                                  0                      92 21_035 
10 2015-01-01                                  0                       7 31_088 
11 2015-03-01                                  0                       6 08_041 
12 2015-04-01                                  0                      22 07_117 
13 2015-07-01                                  0                      23 31_095 
14 2015-12-01                                  0                      17 20_091 
15 2016-07-01                                  0                      35 30_137 
16 2016-07-01                                  0                       0 09_888 
17 2016-09-01                                  0                     356 16_107 
18 2016-12-01                                  0                      13 19_030 
19 2017-06-01                                  0                      80 13_024 
20 2017-07-01                                  0                      30 21_209 
# ℹ abbreviated name: ¹​Births_From_Mortality_PrimeraInfancia

Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-01-01, 2011-10-01, 2012-04-01, 201…
$ Prenatal_Checkups             <dbl> 64212, 84846, 193079, 21850, 109745, 112…
$ Births_from_Prenatal_Checkups <dbl> 10590, 13631, 28623, 3002, 15229, 16053,…
$ entidad                       <dbl> 27, 27, 11, 6, 5, 8, 31, 15, 1, 28, 16, …
# A tibble: 20 × 4
   fecha_nacimiento Prenatal_Checkups Births_from_Prenatal_Checkups entidad
   <date>                       <dbl>                         <dbl>   <dbl>
 1 2011-01-01                   64212                         10590      27
 2 2011-10-01                   84846                         13631      27
 3 2012-04-01                  193079                         28623      11
 4 2014-06-01                   21850                          3002       6
 5 2014-06-01                  109745                         15229       5
 6 2014-09-01                  112381                         16053       8
 7 2014-10-01                   65682                          9728      31
 8 2014-12-01                  510198                         69808      15
 9 2015-03-01                   53714                          6556       1
10 2015-03-01                   94370                         12818      28
11 2015-03-01                  162459                         21877      16
12 2016-09-01                   29159                          4411       4
13 2016-10-01                   58836                          8168      17
14 2017-03-01                   56547                          8336      10
15 2017-12-01                   97825                         12830       2
16 2018-06-01                   93738                         14776      12
17 2018-09-01                  132021                         18679      20
18 2018-12-01                   95425                         12196       2
19 2019-10-01                  197095                         26140      11
20 2019-10-01                  118550                         20091       7
Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-10-01, 2011-10-01, 2012-05-01, 201…
$ Prenatal_Checkups             <dbl> 30, 6089, 529, 491, 52, 122, 410, 49, 15…
$ Births_from_Prenatal_Checkups <dbl> 5, 811, 86, 87, 7, 17, 48, 7, 288, 18, 2…
$ ent_mun                       <glue> "26_014", "14_093", "16_002", "12_019",…
# A tibble: 20 × 4
   fecha_nacimiento Prenatal_Checkups Births_from_Prenatal_Checkups ent_mun
   <date>                       <dbl>                         <dbl> <glue> 
 1 2011-10-01                      30                             5 26_014 
 2 2011-10-01                    6089                           811 14_093 
 3 2012-05-01                     529                            86 16_002 
 4 2012-06-01                     491                            87 12_019 
 5 2012-07-01                      52                             7 21_200 
 6 2012-10-01                     122                            17 14_117 
 7 2013-09-01                     410                            48 08_003 
 8 2014-03-01                      49                             7 20_279 
 9 2015-06-01                    1550                           288 12_057 
10 2016-01-01                     154                            18 30_139 
11 2016-09-01                      13                             2 20_151 
12 2016-12-01                     949                           132 13_059 
13 2017-01-01                      41                             5 14_056 
14 2017-06-01                   38645                          4581 22_014 
15 2017-07-01                     201                            32 31_057 
16 2018-06-01                      10                             1 20_528 
17 2018-07-01                       0                             0 14_998 
18 2018-10-01                      83                            11 31_045 
19 2018-12-01                     539                            84 21_111 
20 2019-07-01                    4950                           749 11_033 

Rows: 20
Columns: 4
$ fecha_nacimiento                  <date> 2011-01-01, 2011-07-01, 2011-07-01,…
$ Births_Dont_Get_Prenatal_Atention <dbl> 849, 641, 85, 195, 46, 177, 229, 375…
$ Births_Get_Prenatal_Atention      <dbl> 13337, 31385, 13548, 9169, 3472, 982…
$ entidad                           <dbl> 12, 11, 24, 10, 6, 31, 28, 20, 2, 30…
# A tibble: 20 × 4
   fecha_nacimiento Births_Dont_Get_Prenatal_At…¹ Births_Get_Prenatal_…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-01-01                                 849                  13337      12
 2 2011-07-01                                 641                  31385      11
 3 2011-07-01                                  85                  13548      24
 4 2011-10-01                                 195                   9169      10
 5 2011-10-01                                  46                   3472       6
 6 2013-07-01                                 177                   9826      31
 7 2013-09-01                                 229                  16334      28
 8 2013-09-01                                 375                  18747      20
 9 2013-10-01                                 411                  14532       2
10 2013-12-01                                 882                  31378      30
11 2013-12-01                                 613                  14836      12
12 2014-01-01                                 905                  34970      14
13 2017-03-01                                  85                   6534       1
14 2017-07-01                                 491                  30921      11
15 2017-09-01                                 240                   7460      23
16 2017-09-01                                 558                  31304      30
17 2018-06-01                                 350                  17413      20
18 2019-04-01                                 424                  24433      30
19 2019-07-01                                1730                  20958       7
20 2019-10-01                                 350                  23167       9
# ℹ abbreviated names: ¹​Births_Dont_Get_Prenatal_Atention,
#   ²​Births_Get_Prenatal_Atention
Rows: 20
Columns: 4
$ fecha_nacimiento                  <date> 2011-10-01, 2012-04-01, 2012-09-01,…
$ Births_Dont_Get_Prenatal_Atention <dbl> 3, 0, 0, 1, 0, 1, 0, 0, 0, 0, 23, 2,…
$ Births_Get_Prenatal_Atention      <dbl> 52, 10, 32, 200, 25, 157, 6, 9, 13, …
$ ent_mun                           <glue> "13_007", "31_004", "16_999", "15_0…
# A tibble: 20 × 4
   fecha_nacimiento Births_Dont_Get_Prenatal_At…¹ Births_Get_Prenatal_…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-10-01                                   3                     52 13_007 
 2 2012-04-01                                   0                     10 31_004 
 3 2012-09-01                                   0                     32 16_999 
 4 2012-10-01                                   1                    200 15_064 
 5 2014-06-01                                   0                     25 30_198 
 6 2014-09-01                                   1                    157 13_052 
 7 2014-12-01                                   0                      6 20_241 
 8 2015-12-01                                   0                      9 20_226 
 9 2016-01-01                                   0                     13 30_017 
10 2016-04-01                                   0                     37 31_067 
11 2016-06-01                                  23                   2216 02_001 
12 2016-10-01                                   2                     74 30_081 
13 2017-03-01                                   1                    139 18_012 
14 2017-10-01                                   2                     51 07_104 
15 2017-10-01                                   5                    321 21_010 
16 2017-10-01                                   4                    270 31_101 
17 2018-06-01                                   0                     14 19_008 
18 2018-09-01                                   0                     36 30_090 
19 2019-04-01                                   2                     40 21_167 
20 2019-07-01                                   0                     16 31_035 
# ℹ abbreviated names: ¹​Births_Dont_Get_Prenatal_Atention,
#   ²​Births_Get_Prenatal_Atention

Rows: 20
Columns: 4
$ fecha_nacimiento                    <date> 2011-01-01, 2011-10-01, 2012-01-0…
$ Maternal_Mortality_Without_Med_Care <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0…
$ Maternal_Mortality_With_Med_Care    <dbl> 10, 3, 2, 1, 1, 4, 1, 2, 8, 23, 6,…
$ entidad                             <dbl> 2, 17, 4, 1, 22, 23, 18, 26, 9, 15…
# A tibble: 20 × 4
   fecha_nacimiento Maternal_Mortality_Without_…¹ Maternal_Mortality_W…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-01-01                                   0                     10       2
 2 2011-10-01                                   0                      3      17
 3 2012-01-01                                   0                      2       4
 4 2013-04-01                                   0                      1       1
 5 2013-06-01                                   0                      1      22
 6 2013-12-01                                   0                      4      23
 7 2014-01-01                                   1                      1      18
 8 2014-06-01                                   0                      2      26
 9 2015-01-01                                   0                      8       9
10 2015-12-01                                   2                     23      15
11 2017-03-01                                   0                      6       5
12 2017-09-01                                   0                      1       2
13 2018-09-01                                   0                      7       5
14 2018-10-01                                   0                      4      17
15 2018-12-01                                   0                      1       2
16 2018-12-01                                   0                      1       2
17 2018-12-01                                   0                      3      23
18 2019-03-01                                   0                      4      19
19 2019-06-01                                   0                      1      18
20 2019-09-01                                   0                      1      32
# ℹ abbreviated names: ¹​Maternal_Mortality_Without_Med_Care,
#   ²​Maternal_Mortality_With_Med_Care
Rows: 20
Columns: 4
$ fecha_nacimiento                    <date> 2011-01-01, 2012-04-01, 2012-09-0…
$ Maternal_Mortality_Without_Med_Care <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Maternal_Mortality_With_Med_Care    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
$ ent_mun                             <glue> "28_008", "20_495", "16_066", "32…
# A tibble: 20 × 4
   fecha_nacimiento Maternal_Mortality_Without_…¹ Maternal_Mortality_W…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-01-01                                   0                      0 28_008 
 2 2012-04-01                                   0                      0 20_495 
 3 2012-09-01                                   0                      0 16_066 
 4 2012-10-01                                   0                      0 32_038 
 5 2013-02-01                                   0                      0 16_888 
 6 2013-05-01                                   0                      0 16_022 
 7 2013-09-01                                   0                      0 24_058 
 8 2013-09-01                                   0                      0 20_542 
 9 2015-01-01                                   0                      0 07_011 
10 2015-09-01                                   0                      0 20_532 
11 2016-06-01                                   0                      1 19_018 
12 2016-12-01                                   0                      0 21_150 
13 2016-12-01                                   0                      0 10_027 
14 2017-07-01                                   0                      0 11_013 
15 2018-03-01                                   0                      0 20_546 
16 2018-07-01                                   0                      0 27_007 
17 2018-07-01                                   0                      0 21_128 
18 2018-09-01                                   0                      0 12_042 
19 2018-12-01                                   0                      0 20_125 
20 2019-03-01                                   0                      0 21_999 
# ℹ abbreviated names: ¹​Maternal_Mortality_Without_Med_Care,
#   ²​Maternal_Mortality_With_Med_Care

Rows: 20
Columns: 4
$ fecha_nacimiento            <date> 2011-01-01, 2011-07-01, 2012-01-01, 2012-…
$ Births_From_Weight_Adjusted <dbl> 6156, 16438, 6207, 11005, 22539, 31187, 73…
$ Weight_Adjusted             <dbl> 19338356, 52834450, 19185226, 35257688, 70…
$ entidad                     <dbl> 1, 8, 29, 27, 16, 21, 32, 17, 27, 10, 22, …
# A tibble: 20 × 4
   fecha_nacimiento Births_From_Weight_Adjusted Weight_Adjusted entidad
   <date>                                 <dbl>           <dbl>   <dbl>
 1 2011-01-01                              6156        19338356       1
 2 2011-07-01                             16438        52834450       8
 3 2012-01-01                              6207        19185226      29
 4 2012-04-01                             11005        35257688      27
 5 2012-06-01                             22539        70964741      16
 6 2012-07-01                             31187        96738817      21
 7 2013-04-01                              7398        23219955      32
 8 2013-04-01                              7799        24284879      17
 9 2015-04-01                             10791        34387772      27
10 2015-06-01                              8661        27448854      10
11 2015-06-01                              9683        29944942      22
12 2015-09-01                             15523        48799114      12
13 2016-06-01                             11180        36496343      25
14 2016-12-01                             13510        42417246      12
15 2017-12-01                              2256         7120325       4
16 2018-03-01                              3154        10048996       4
17 2018-09-01                             11008        36075373      26
18 2019-03-01                              5292        16246528      29
19 2019-06-01                             12882        40952009       5
20 2019-09-01                             16632        52283906      20
Rows: 20
Columns: 4
$ fecha_nacimiento            <date> 2012-01-01, 2012-01-01, 2012-09-01, 2013-…
$ Births_From_Weight_Adjusted <dbl> 0, 48, 300, 40, 44, 180, 68, 45, 429, 81, …
$ Weight_Adjusted             <dbl> 0, 154800, 950012, 117188, 143805, 562720,…
$ ent_mun                     <glue> "09_888", "10_018", "22_017", "07_023", "…
# A tibble: 20 × 4
   fecha_nacimiento Births_From_Weight_Adjusted Weight_Adjusted ent_mun
   <date>                                 <dbl>           <dbl> <glue> 
 1 2012-01-01                                 0               0 09_888 
 2 2012-01-01                                48          154800 10_018 
 3 2012-09-01                               300          950012 22_017 
 4 2013-01-01                                40          117188 07_023 
 5 2013-04-01                                44          143805 30_197 
 6 2013-06-01                               180          562720 29_018 
 7 2014-05-01                                68          219650 16_077 
 8 2014-12-01                                45          140725 12_036 
 9 2015-01-01                               429         1373870 11_035 
10 2015-12-01                                81          272683 06_004 
11 2017-06-01                               134          448587 25_002 
12 2017-09-01                               118          375350 05_003 
13 2018-01-01                                69          220695 07_048 
14 2018-03-01                                18           56860 21_192 
15 2018-06-01                                 9           27860 20_394 
16 2018-06-01                               350         1089742 16_082 
17 2018-06-01                                87          268758 21_035 
18 2018-07-01                               112          343122 30_030 
19 2018-12-01                                11           34995 21_096 
20 2019-09-01                               285          916111 05_009 

Rows: 20
Columns: 5
$ fecha_nacimiento                                     <date> 2011-04-01, 2011…
$ Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE  <dbl> 28120, 8903, 5324…
$ Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE <dbl> 6261, 1442, 16961…
$ Births_from_quarter_first_prenatal_TERCER_TRIMESTRE  <dbl> 1026, 241, 3118, …
$ entidad                                              <dbl> 14, 25, 15, 28, 2…
# A tibble: 20 × 5
   fecha_nacimiento Births_from_quarter_first_prenatal_…¹ Births_from_quarter_…²
   <date>                                           <dbl>                  <dbl>
 1 2011-04-01                                       28120                   6261
 2 2011-04-01                                        8903                   1442
 3 2011-07-01                                       53245                  16961
 4 2012-04-01                                       10377                   2227
 5 2012-06-01                                        8304                   1812
 6 2012-10-01                                       11205                   2763
 7 2012-10-01                                        6819                   1830
 8 2014-06-01                                        9991                   1547
 9 2014-07-01                                       12403                   1763
10 2014-09-01                                       10429                   1975
11 2014-09-01                                       10710                   2467
12 2015-03-01                                       10063                   2001
13 2015-07-01                                       12518                   1605
14 2015-12-01                                        2785                    755
15 2015-12-01                                        2440                    324
16 2017-06-01                                        8063                   1767
17 2018-01-01                                       20575                   5725
18 2018-03-01                                        2334                    721
19 2018-03-01                                       21856                   5970
20 2018-09-01                                       10372                   1928
# ℹ abbreviated names: ¹​Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE,
#   ²​Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE
# ℹ 2 more variables:
#   Births_from_quarter_first_prenatal_TERCER_TRIMESTRE <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento                                     <date> 2011-04-01, 2011…
$ Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE  <dbl> 18, 14, 18, 44, 4…
$ Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE <dbl> 6, 5, 16, 10, 12,…
$ Births_from_quarter_first_prenatal_TERCER_TRIMESTRE  <dbl> 1, 1, 2, 0, 2, 19…
$ ent_mun                                              <glue> "07_039", "08_00…
# A tibble: 20 × 5
   fecha_nacimiento Births_from_quarter_first_prenatal_…¹ Births_from_quarter_…²
   <date>                                           <dbl>                  <dbl>
 1 2011-04-01                                          18                      6
 2 2011-04-01                                          14                      5
 3 2011-04-01                                          18                     16
 4 2011-10-01                                          44                     10
 5 2011-11-01                                          44                     12
 6 2012-04-01                                         411                    113
 7 2012-04-01                                         141                     44
 8 2012-09-01                                          73                      8
 9 2013-04-01                                           4                      0
10 2013-06-01                                          31                      4
11 2013-12-01                                           0                      2
12 2013-12-01                                          23                     10
13 2015-03-01                                          46                     12
14 2016-01-01                                         129                     51
15 2016-12-01                                           8                      0
16 2017-06-01                                           5                      1
17 2018-10-01                                          21                     20
18 2018-12-01                                          16                      3
19 2019-01-01                                          33                      3
20 2019-03-01                                          60                     15
# ℹ abbreviated names: ¹​Births_from_quarter_first_prenatal_PRIMER_TRIMESTRE,
#   ²​Births_from_quarter_first_prenatal_SEGUNDO_TRIMESTRE
# ℹ 2 more variables:
#   Births_from_quarter_first_prenatal_TERCER_TRIMESTRE <dbl>, ent_mun <glue>

Rows: 20
Columns: 13
$ fecha_nacimiento                                                                <date> …
$ Births_from_who_helped_to_deliver_enfermera                                     <dbl> …
$ Births_from_who_helped_to_deliver_medico                                        <dbl> …
$ Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl> …
$ Births_from_who_helped_to_deliver_general                                       <dbl> …
$ Births_from_who_helped_to_deliver_partera                                       <dbl> …
$ Births_from_who_helped_to_deliver_otro                                          <dbl> …
$ Births_from_who_helped_to_deliver_otro_especialista                             <dbl> …
$ Births_from_who_helped_to_deliver_mpss                                          <dbl> …
$ Births_from_who_helped_to_deliver_mip                                           <dbl> …
$ Births_from_who_helped_to_deliver_residente                                     <dbl> …
$ Births_from_who_helped_to_deliver_gineco_obstetra                               <dbl> …
$ entidad                                                                         <dbl> …
# A tibble: 20 × 13
   fecha_nacimiento Births_from_who_helped_to_deliver_e…¹ Births_from_who_help…²
   <date>                                           <dbl>                  <dbl>
 1 2011-07-01                                          62                  15730
 2 2012-08-01                                          55                  25289
 3 2012-09-01                                          21                  13217
 4 2013-01-01                                           9                   6254
 5 2013-04-01                                          29                  12369
 6 2013-04-01                                         133                  20081
 7 2014-04-01                                          65                  35956
 8 2015-06-01                                           5                   4471
 9 2015-09-01                                          82                  16341
10 2015-09-01                                         273                  67331
11 2015-09-01                                           8                   8258
12 2016-09-01                                          28                  12632
13 2017-03-01                                          11                   5881
14 2018-06-01                                           2                   1628
15 2018-12-01                                           6                   4894
16 2018-12-01                                           7                   1670
17 2019-04-01                                          12                   7694
18 2019-06-01                                           7                   6302
19 2019-09-01                                           8                   4038
20 2019-09-01                                         132                   1159
# ℹ abbreviated names: ¹​Births_from_who_helped_to_deliver_enfermera,
#   ²​Births_from_who_helped_to_deliver_medico
# ℹ 10 more variables:
#   Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl>,
#   Births_from_who_helped_to_deliver_general <dbl>,
#   Births_from_who_helped_to_deliver_partera <dbl>,
#   Births_from_who_helped_to_deliver_otro <dbl>, …
Rows: 20
Columns: 13
$ fecha_nacimiento                                                                <date> …
$ Births_from_who_helped_to_deliver_enfermera                                     <dbl> …
$ Births_from_who_helped_to_deliver_medico                                        <dbl> …
$ Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl> …
$ Births_from_who_helped_to_deliver_general                                       <dbl> …
$ Births_from_who_helped_to_deliver_partera                                       <dbl> …
$ Births_from_who_helped_to_deliver_otro                                          <dbl> …
$ Births_from_who_helped_to_deliver_otro_especialista                             <dbl> …
$ Births_from_who_helped_to_deliver_mpss                                          <dbl> …
$ Births_from_who_helped_to_deliver_mip                                           <dbl> …
$ Births_from_who_helped_to_deliver_residente                                     <dbl> …
$ Births_from_who_helped_to_deliver_gineco_obstetra                               <dbl> …
$ ent_mun                                                                         <glue> …
# A tibble: 20 × 13
   fecha_nacimiento Births_from_who_helped_to_deliver_e…¹ Births_from_who_help…²
   <date>                                           <dbl>                  <dbl>
 1 2011-04-01                                           0                      4
 2 2011-10-01                                           0                    253
 3 2013-03-01                                           0                      9
 4 2013-04-01                                           0                     36
 5 2014-05-01                                           0                    460
 6 2014-06-01                                           0                      4
 7 2014-07-01                                           0                     22
 8 2015-06-01                                           2                   3473
 9 2015-09-01                                           0                     34
10 2017-04-01                                           0                      5
11 2017-07-01                                           0                     27
12 2017-12-01                                           0                     63
13 2018-04-01                                           0                     25
14 2019-01-01                                           0                      0
15 2019-03-01                                           0                      4
16 2019-06-01                                           0                      1
17 2019-06-01                                           0                     13
18 2019-07-01                                           0                     55
19 2019-07-01                                           0                     15
20 2019-10-01                                           0                      1
# ℹ abbreviated names: ¹​Births_from_who_helped_to_deliver_enfermera,
#   ²​Births_from_who_helped_to_deliver_medico
# ℹ 10 more variables:
#   Births_from_who_helped_to_deliver_persona_autorizada_por_la_secretaria_de_salud <dbl>,
#   Births_from_who_helped_to_deliver_general <dbl>,
#   Births_from_who_helped_to_deliver_partera <dbl>,
#   Births_from_who_helped_to_deliver_otro <dbl>, …

Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-01-01, 2011-01-01, 2011-08-01, 201…
$ Gestational_Weeks             <dbl> 115758, 618971, 948459, 208992, 446761, …
$ Births_From_Gestational_Weeks <dbl> 2968, 15848, 24498, 5367, 11554, 14398, …
$ entidad                       <dbl> 6, 20, 16, 18, 24, 27, 25, 21, 16, 6, 2,…
# A tibble: 20 × 4
   fecha_nacimiento Gestational_Weeks Births_From_Gestational_Weeks entidad
   <date>                       <dbl>                         <dbl>   <dbl>
 1 2011-01-01                  115758                          2968       6
 2 2011-01-01                  618971                         15848      20
 3 2011-08-01                  948459                         24498      16
 4 2012-01-01                  208992                          5367      18
 5 2012-04-01                  446761                         11554      24
 6 2012-07-01                  558991                         14398      27
 7 2012-07-01                  568796                         14686      25
 8 2012-10-01                 1196289                         30788      21
 9 2012-11-01                  893102                         23041      16
10 2014-03-01                  108941                          2805       6
11 2014-10-01                  564480                         14521       2
12 2015-09-01                  138951                          3585       3
13 2015-09-01                  222341                          5724      18
14 2016-12-01                  132668                          3418       4
15 2016-12-01                  570467                         14743       8
16 2017-09-01                  125218                          3224       6
17 2017-09-01                  590057                         15266       5
18 2018-06-01                  405949                         10567      25
19 2018-12-01                  445244                         11529      25
20 2018-12-01                 1096786                         28346      21
Rows: 20
Columns: 4
$ fecha_nacimiento              <date> 2011-02-01, 2011-07-01, 2011-10-01, 201…
$ Gestational_Weeks             <dbl> 1164, 2741, 425, 108981, 4940, 5433, 197…
$ Births_From_Gestational_Weeks <dbl> 30, 69, 11, 2822, 126, 138, 5, 2, 526, 4…
$ ent_mun                       <glue> "16_094", "12_017", "21_206", "27_004",…
# A tibble: 20 × 4
   fecha_nacimiento Gestational_Weeks Births_From_Gestational_Weeks ent_mun
   <date>                       <dbl>                         <dbl> <glue> 
 1 2011-02-01                    1164                            30 16_094 
 2 2011-07-01                    2741                            69 12_017 
 3 2011-10-01                     425                            11 21_206 
 4 2012-01-01                  108981                          2822 27_004 
 5 2012-10-01                    4940                           126 28_039 
 6 2013-01-01                    5433                           138 15_052 
 7 2013-04-01                     197                             5 20_088 
 8 2013-06-01                      80                             2 20_493 
 9 2014-01-01                   20418                           526 07_108 
10 2014-06-01                    1611                            41 20_475 
11 2015-06-01                     498                            13 20_123 
12 2015-07-01                  282209                          7271 09_007 
13 2016-01-01                     821                            21 31_049 
14 2017-09-01                    2750                            71 12_078 
15 2017-12-01                   38890                          1012 05_018 
16 2018-04-01                    4602                           118 21_183 
17 2018-06-01                    9972                           257 30_183 
18 2018-06-01                    6669                           173 25_014 
19 2018-12-01                     308                             8 24_999 
20 2018-12-01                    3595                            92 16_015 

Rows: 20
Columns: 7
$ fecha_nacimiento                     <date> 2012-01-01, 2012-01-01, 2012-05-…
$ Births_from_used_procedure_CESAREA   <dbl> 2424, 5747, 10547, 14808, 3225, 5…
$ Births_from_used_procedure_EUTOCICO  <dbl> 5102, 6358, 13346, 15473, 5643, 7…
$ Births_from_used_procedure_FORCEPS   <dbl> 58, 12, 12, 222, 20, 27, 20, 5, 3…
$ Births_from_used_procedure_OTRO      <dbl> 11, 12, 8, 176, 11, 10, 18, 4, 44…
$ Births_from_used_procedure_DISTOCICO <dbl> 0, 0, 0, 0, 0, 0, 0, 37, 2894, 1,…
$ entidad                              <dbl> 32, 26, 16, 11, 10, 26, 26, 4, 19…
# A tibble: 20 × 7
   fecha_nacimiento Births_from_used_procedure_CESAREA Births_from_used_proced…¹
   <date>                                        <dbl>                     <dbl>
 1 2012-01-01                                     2424                      5102
 2 2012-01-01                                     5747                      6358
 3 2012-05-01                                    10547                     13346
 4 2012-10-01                                    14808                     15473
 5 2013-04-01                                     3225                      5643
 6 2013-09-01                                     5752                      7059
 7 2014-09-01                                     6218                      7090
 8 2015-09-01                                     1854                      2891
 9 2015-09-01                                    13236                      9551
10 2015-09-01                                     3293                      3089
11 2015-10-01                                    17774                     18577
12 2016-01-01                                     5613                      7082
13 2016-03-01                                     4634                      4972
14 2016-04-01                                    14736                     14364
15 2017-06-01                                    16201                     15589
16 2017-06-01                                     1543                      1364
17 2017-07-01                                    16633                     16228
18 2017-12-01                                     7152                      8984
19 2018-06-01                                     2488                      4646
20 2018-09-01                                     5867                      5531
# ℹ abbreviated name: ¹​Births_from_used_procedure_EUTOCICO
# ℹ 4 more variables: Births_from_used_procedure_FORCEPS <dbl>,
#   Births_from_used_procedure_OTRO <dbl>,
#   Births_from_used_procedure_DISTOCICO <dbl>, entidad <dbl>
Rows: 20
Columns: 7
$ fecha_nacimiento                     <date> 2011-04-01, 2011-07-01, 2012-04-…
$ Births_from_used_procedure_CESAREA   <dbl> 44, 1, 27, 42, 4, 4, 61, 196, 429…
$ Births_from_used_procedure_EUTOCICO  <dbl> 45, 6, 35, 53, 4, 4, 123, 137, 35…
$ Births_from_used_procedure_FORCEPS   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
$ Births_from_used_procedure_OTRO      <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
$ Births_from_used_procedure_DISTOCICO <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ ent_mun                              <glue> "12_040", "08_043", "15_083", "2…
# A tibble: 20 × 7
   fecha_nacimiento Births_from_used_procedure_CESAREA Births_from_used_proced…¹
   <date>                                        <dbl>                     <dbl>
 1 2011-04-01                                       44                        45
 2 2011-07-01                                        1                         6
 3 2012-04-01                                       27                        35
 4 2012-10-01                                       42                        53
 5 2012-10-01                                        4                         4
 6 2012-12-01                                        4                         4
 7 2013-04-01                                       61                       123
 8 2013-07-01                                      196                       137
 9 2013-11-01                                      429                       358
10 2014-03-01                                        0                         1
11 2015-01-01                                       83                       119
12 2015-01-01                                       10                        13
13 2015-06-01                                        4                         2
14 2015-10-01                                       55                        32
15 2016-06-01                                       29                        44
16 2017-09-01                                      542                       459
17 2017-12-01                                        0                         0
18 2018-12-01                                        7                        52
19 2019-01-01                                       10                        12
20 2019-03-01                                        1                         3
# ℹ abbreviated name: ¹​Births_from_used_procedure_EUTOCICO
# ℹ 4 more variables: Births_from_used_procedure_FORCEPS <dbl>,
#   Births_from_used_procedure_OTRO <dbl>,
#   Births_from_used_procedure_DISTOCICO <dbl>, ent_mun <glue>

Rows: 20
Columns: 4
$ fecha_nacimiento                                   <date> 2011-01-01, 2011-0…
$ Births_from_mother_scholarity_Preparatorio_Y_Menos <dbl> 4992, 15324, 12951,…
$ Births_from_mother_scholarity_Profesional_Y_Mas    <dbl> 634, 2745, 2693, 39…
$ entidad                                            <dbl> 23, 28, 5, 19, 17, …
# A tibble: 20 × 4
   fecha_nacimiento Births_from_mother_scholari…¹ Births_from_mother_s…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-01-01                                4992                    634      23
 2 2011-07-01                               15324                   2745      28
 3 2012-07-01                               12951                   2693       5
 4 2012-09-01                               17374                   3941      19
 5 2012-10-01                                6664                   1083      17
 6 2013-01-01                               62818                   8336      15
 7 2013-01-01                               11070                   2343       5
 8 2013-04-01                                8530                   2365      25
 9 2013-09-01                                8319                   1271      10
10 2013-12-01                               10008                   1585      24
11 2014-09-01                               10562                   2545      26
12 2014-10-01                                7151                   1171      17
13 2014-12-01                               11671                   2409      28
14 2015-03-01                               15689                   1984      20
15 2015-04-01                               20069                   1926       7
16 2015-06-01                                8884                   2704      25
17 2016-01-01                               25511                   3737      21
18 2016-12-01                                9573                   2787      25
19 2017-10-01                               10059                   1697      27
20 2019-10-01                               21445                   3890      30
# ℹ abbreviated names: ¹​Births_from_mother_scholarity_Preparatorio_Y_Menos,
#   ²​Births_from_mother_scholarity_Profesional_Y_Mas
Rows: 20
Columns: 4
$ fecha_nacimiento                                   <date> 2011-04-01, 2012-0…
$ Births_from_mother_scholarity_Preparatorio_Y_Menos <dbl> 162, 11, 34, 148, 2…
$ Births_from_mother_scholarity_Profesional_Y_Mas    <dbl> 5, 2, 4, 7, 1, 10, …
$ ent_mun                                            <glue> "22_018", "26_999"…
# A tibble: 20 × 4
   fecha_nacimiento Births_from_mother_scholari…¹ Births_from_mother_s…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-04-01                                 162                      5 22_018 
 2 2012-01-01                                  11                      2 26_999 
 3 2012-01-01                                  34                      4 21_060 
 4 2013-04-01                                 148                      7 07_013 
 5 2013-06-01                                  23                      1 19_020 
 6 2013-06-01                                 125                     10 29_039 
 7 2013-09-01                                 290                     25 30_109 
 8 2013-10-01                                   0                      0 02_998 
 9 2013-11-01                                  19                      0 16_028 
10 2014-06-01                                  21                     10 21_204 
11 2014-12-01                                  32                      4 21_191 
12 2015-03-01                                  87                      2 05_036 
13 2015-03-01                                 133                      7 30_210 
14 2016-10-01                                  12                      2 21_029 
15 2018-01-01                                 108                     33 14_015 
16 2018-01-01                                 123                     14 30_133 
17 2018-06-01                                  12                      1 16_028 
18 2018-07-01                                  29                      0 30_162 
19 2018-09-01                                2489                    962 08_019 
20 2019-09-01                                 215                     13 20_324 
# ℹ abbreviated names: ¹​Births_from_mother_scholarity_Preparatorio_Y_Menos,
#   ²​Births_from_mother_scholarity_Profesional_Y_Mas

Rows: 20
Columns: 4
$ fecha_nacimiento        <date> 2011-01-01, 2011-01-01, 2011-01-01, 2012-04-0…
$ Enrolled_health_service <dbl> 5951, 7497, 9125, 13988, 17376, 5921, 12780, 1…
$ Not_Enrolled            <dbl> 461, 987, 4549, 3284, 5260, 487, 1307, 1280, 1…
$ entidad                 <dbl> 1, 10, 2, 20, 16, 23, 8, 8, 28, 17, 24, 11, 7,…
# A tibble: 20 × 4
   fecha_nacimiento Enrolled_health_service Not_Enrolled entidad
   <date>                             <dbl>        <dbl>   <dbl>
 1 2011-01-01                          5951          461       1
 2 2011-01-01                          7497          987      10
 3 2011-01-01                          9125         4549       2
 4 2012-04-01                         13988         3284      20
 5 2012-11-01                         17376         5260      16
 6 2013-12-01                          5921          487      23
 7 2014-03-01                         12780         1307       8
 8 2014-06-01                         14388         1280       8
 9 2016-03-01                         11033         1266      28
10 2016-04-01                          6383         1277      17
11 2016-09-01                         12106          786      24
12 2017-07-01                         27520         3463      11
13 2017-10-01                         19411         2457       7
14 2017-12-01                         10308          718      24
15 2017-12-01                          5399          546      23
16 2017-12-01                         14176          610      12
17 2018-03-01                          1910          310       6
18 2018-12-01                         13225          613      12
19 2019-01-01                         21066         3039      30
20 2019-01-01                         18102         2641       7
Rows: 20
Columns: 4
$ fecha_nacimiento        <date> 2011-07-01, 2013-04-01, 2013-04-01, 2013-06-0…
$ Enrolled_health_service <dbl> 10, 19, 468, 6, 218, 368, 135, 100, 27, 82, 0,…
$ Not_Enrolled            <dbl> 0, 0, 205, 0, 4, 69, 3, 47, 3, 220, 0, 0, 2, 1…
$ ent_mun                 <glue> "20_290", "31_042", "15_051", "20_315", "01_0…
# A tibble: 20 × 4
   fecha_nacimiento Enrolled_health_service Not_Enrolled ent_mun
   <date>                             <dbl>        <dbl> <glue> 
 1 2011-07-01                            10            0 20_290 
 2 2013-04-01                            19            0 31_042 
 3 2013-04-01                           468          205 15_051 
 4 2013-06-01                             6            0 20_315 
 5 2013-06-01                           218            4 01_011 
 6 2013-09-01                           368           69 13_069 
 7 2013-12-01                           135            3 24_053 
 8 2014-06-01                           100           47 30_073 
 9 2014-10-01                            27            3 31_034 
10 2014-12-01                            82          220 25_009 
11 2015-03-01                             0            0 32_998 
12 2016-04-01                            11            0 31_016 
13 2016-04-01                            34            2 30_197 
14 2016-06-01                            18            1 20_554 
15 2016-06-01                            79            2 20_364 
16 2017-03-01                            45            0 24_002 
17 2017-06-01                            31            0 20_348 
18 2017-10-01                           437           18 14_023 
19 2018-09-01                           316           10 12_046 
20 2018-12-01                           557           17 19_041 

Rows: 20
Columns: 22
$ fecha_nacimiento      <date> 2011-07-01, 2012-10-01, 2012-10-01, 2013-12-01,…
$ IMSS_2                <int> 7079, 2699, 10191, 2950, 3214, 3550, 3236, 1666,…
$ ISSFAM                <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ ISSSTE_2              <int> 249, 248, 1959, 162, 226, 397, 199, 310, 1431, 4…
$ PEMEX                 <int> 509, 1, 89, 4, 21, 32, 4, 4, 43, 1, 6, 16, 29, 4…
$ SEDENA                <int> 143, 17, 264, 23, 39, 85, 13, 49, 914, 48, 46, 1…
$ SEMAR                 <int> 192, 13, 78, 0, 6, 3, 1, 1, 52, 0, 3, 1, 4, 4, 1…
$ IMSS_BIENESTAR        <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ IMSS_OPORTUNIDADES    <int> 159, 1, 4, 2, 121, 36, 2, 19, 147, 71, 616, 897,…
$ SEGURO_POPULAR        <int> 18022, 3818, 8600, 5221, 5451, 18042, 5913, 4189…
$ SEGURO_POPULAR_INSABI <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ NINGUNA               <int> 8379, 445, 10281, 1091, 630, 8413, 1129, 1344, 1…
$ NO_ESPECIFICADO       <int> 39, 1, 21, 2, 8, 0, 0, 0, 3, 0, 0, 0, 0, 0, 105,…
$ NO_APLICA             <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ SE_IGNORA             <int> 856, 93, 662, 35, 225, 844, 18, 61, 2831, 117, 3…
$ OTRA                  <int> 207, 11, 1661, 40, 35, 374, 30, 20, 2639, 52, 27…
$ Contributory_System   <int> 8172, 2978, 12581, 3139, 3506, 4067, 3453, 2030,…
$ Non_Contributory      <int> 18181, 3819, 8604, 5223, 5572, 18078, 5915, 4208…
$ NONE_NOT_SPECIFIED    <int> 9274, 539, 10964, 1128, 863, 9257, 1147, 1405, 1…
$ Otra                  <int> 207, 11, 1661, 40, 35, 374, 30, 20, 2639, 52, 27…
$ TOTAL                 <int> 35834, 7347, 33810, 9530, 9976, 31776, 10545, 76…
$ entidad               <dbl> 30, 23, 9, 22, 31, 21, 22, 17, 15, 10, 5, 21, 4,…
# A tibble: 20 × 22
   fecha_nacimiento IMSS_2 ISSFAM ISSSTE_2 PEMEX SEDENA SEMAR IMSS_BIENESTAR
   <date>            <int>  <int>    <int> <int>  <int> <int>          <int>
 1 2011-07-01         7079      0      249   509    143   192              0
 2 2012-10-01         2699      0      248     1     17    13              0
 3 2012-10-01        10191      0     1959    89    264    78              0
 4 2013-12-01         2950      0      162     4     23     0              0
 5 2014-07-01         3214      0      226    21     39     6              0
 6 2015-09-01         3550      0      397    32     85     3              0
 7 2015-09-01         3236      0      199     4     13     1              0
 8 2016-01-01         1666      0      310     4     49     1              0
 9 2016-09-01        14459      0     1431    43    914    52              0
10 2017-03-01         2319      0      416     1     48     0              0
11 2017-06-01         7182      0      491     6     46     3              0
12 2017-06-01         3790      0      391    16    110     1              0
13 2017-09-01          913      0      110    29     19     4              0
14 2017-10-01         7899      0      677    49     92     4              0
15 2018-04-01        12337      0      353    65      8    13              0
16 2018-09-01         5505      0      330    56      6     1              0
17 2018-12-01        13033      0     1140   630     42    22              0
18 2019-04-01        11970      0      329    50      9     7              0
19 2019-06-01         1413      0      238    10      1     5              0
20 2019-10-01         2073      0      385   104     14     1              0
# ℹ 14 more variables: IMSS_OPORTUNIDADES <int>, SEGURO_POPULAR <int>,
#   SEGURO_POPULAR_INSABI <int>, NINGUNA <int>, NO_ESPECIFICADO <int>,
#   NO_APLICA <int>, SE_IGNORA <int>, OTRA <int>, Contributory_System <int>,
#   Non_Contributory <int>, NONE_NOT_SPECIFIED <int>, Otra <int>, TOTAL <int>,
#   entidad <dbl>
Rows: 20
Columns: 22
$ fecha_nacimiento      <date> 2011-04-01, 2012-01-01, 2012-04-01, 2012-05-01,…
$ IMSS_2                <dbl> 23, 3, 43, 5, 0, 8, 0, 0, 3, 9, 0, 3, 5, 3, 0, 0…
$ ISSFAM                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ ISSSTE_2              <dbl> 6, 0, 3, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,…
$ PEMEX                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ SEDENA                <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
$ SEMAR                 <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ IMSS_BIENESTAR        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ IMSS_OPORTUNIDADES    <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 53, 0, 9, 0, 2,…
$ SEGURO_POPULAR        <dbl> 222, 89, 58, 85, 16, 149, 1, 6, 46, 58, 5, 76, 1…
$ SEGURO_POPULAR_INSABI <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ NINGUNA               <dbl> 9, 1, 4, 13, 1, 19, 4, 1, 11, 6, 2, 1, 1, 6, 0, …
$ NO_ESPECIFICADO       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ NO_APLICA             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ SE_IGNORA             <dbl> 17, 0, 11, 2, 0, 1, 0, 0, 3, 1, 0, 0, 1, 4, 0, 0…
$ OTRA                  <dbl> 0, 0, 0, 0, 0, 9, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
$ Contributory_System   <dbl> 30, 3, 47, 23, 0, 8, 0, 0, 3, 9, 0, 4, 5, 4, 0, …
$ Non_Contributory      <dbl> 222, 89, 58, 86, 16, 149, 1, 6, 46, 61, 5, 129, …
$ NONE_NOT_SPECIFIED    <dbl> 26, 1, 15, 15, 1, 20, 4, 1, 14, 7, 2, 1, 2, 10, …
$ Otra                  <dbl> 0, 0, 0, 0, 0, 9, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
$ TOTAL                 <dbl> 278, 93, 120, 124, 17, 186, 5, 7, 64, 77, 7, 134…
$ ent_mun               <glue> "11_026", "24_056", "31_052", "16_010", "20_393…
# A tibble: 20 × 22
   fecha_nacimiento IMSS_2 ISSFAM ISSSTE_2 PEMEX SEDENA SEMAR IMSS_BIENESTAR
   <date>            <dbl>  <dbl>    <dbl> <dbl>  <dbl> <dbl>          <dbl>
 1 2011-04-01           23      0        6     0      1     0              0
 2 2012-01-01            3      0        0     0      0     0              0
 3 2012-04-01           43      0        3     0      1     0              0
 4 2012-05-01            5      0       17     0      0     1              0
 5 2012-07-01            0      0        0     0      0     0              0
 6 2014-06-01            8      0        0     0      0     0              0
 7 2014-09-01            0      0        0     0      0     0              0
 8 2014-12-01            0      0        0     0      0     0              0
 9 2014-12-01            3      0        0     0      0     0              0
10 2016-03-01            9      0        0     0      0     0              0
11 2016-03-01            0      0        0     0      0     0              0
12 2016-09-01            3      0        0     0      1     0              0
13 2016-10-01            5      0        0     0      0     0              0
14 2016-12-01            3      0        1     0      0     0              0
15 2017-03-01            0      0        0     0      0     0              0
16 2017-06-01            0      0        0     0      0     0              0
17 2017-09-01            0      0        1     0      0     0              0
18 2018-09-01           10      0        5     0      0     0              0
19 2019-06-01           29      0        0     0      0     0              0
20 2019-09-01            2      0        2     0      0     0              0
# ℹ 14 more variables: IMSS_OPORTUNIDADES <dbl>, SEGURO_POPULAR <dbl>,
#   SEGURO_POPULAR_INSABI <dbl>, NINGUNA <dbl>, NO_ESPECIFICADO <dbl>,
#   NO_APLICA <dbl>, SE_IGNORA <dbl>, OTRA <dbl>, Contributory_System <dbl>,
#   Non_Contributory <dbl>, NONE_NOT_SPECIFIED <dbl>, Otra <dbl>, TOTAL <dbl>,
#   ent_mun <glue>

Rows: 20
Columns: 4
$ fecha_nacimiento   <date> 2011-04-01, 2011-10-01, 2013-06-01, 2013-06-01, 20…
$ Congenital_Anomaly <dbl> 680, 3276, 677, 201, 189, 1638, 1186, 584, 300, 568…
$ None_Anomaly       <dbl> 12357, 29914, 6266, 2826, 3313, 25794, 29392, 11947…
$ entidad            <dbl> 2, 9, 1, 3, 3, 11, 30, 13, 4, 26, 30, 25, 32, 25, 2…
# A tibble: 20 × 4
   fecha_nacimiento Congenital_Anomaly None_Anomaly entidad
   <date>                        <dbl>        <dbl>   <dbl>
 1 2011-04-01                      680        12357       2
 2 2011-10-01                     3276        29914       9
 3 2013-06-01                      677         6266       1
 4 2013-06-01                      201         2826       3
 5 2014-09-01                      189         3313       3
 6 2015-01-01                     1638        25794      11
 7 2015-03-01                     1186        29392      30
 8 2015-06-01                      584        11947      13
 9 2015-06-01                      300         4258       4
10 2016-03-01                      568         8896      26
11 2016-04-01                     1152        27359      30
12 2016-06-01                      547        11120      25
13 2016-09-01                      334         7822      32
14 2017-03-01                     2055         8588      25
15 2017-06-01                     1367        10036      26
16 2018-01-01                      173         6560      17
17 2018-09-01                      996        30149      30
18 2019-06-01                      419        10985      24
19 2019-07-01                      634        29535      21
20 2019-09-01                      822         5552       1
Rows: 20
Columns: 4
$ fecha_nacimiento   <date> 2011-01-01, 2011-01-01, 2011-10-01, 2012-10-01, 20…
$ Congenital_Anomaly <dbl> 2, 0, 0, 0, 1, 2, 6, 0, 3, 5, 1, 5, 14, 2, 1, 27, 2…
$ None_Anomaly       <dbl> 65, 31, 1, 73, 387, 95, 107, 18, 19, 232, 220, 144,…
$ ent_mun            <glue> "07_081", "30_054", "20_276", "12_043", "30_010", …
# A tibble: 20 × 4
   fecha_nacimiento Congenital_Anomaly None_Anomaly ent_mun
   <date>                        <dbl>        <dbl> <glue> 
 1 2011-01-01                        2           65 07_081 
 2 2011-01-01                        0           31 30_054 
 3 2011-10-01                        0            1 20_276 
 4 2012-10-01                        0           73 12_043 
 5 2012-10-01                        1          387 30_010 
 6 2013-01-01                        2           95 17_022 
 7 2013-03-01                        6          107 16_010 
 8 2013-04-01                        0           18 20_446 
 9 2013-04-01                        3           19 20_999 
10 2013-09-01                        5          232 20_318 
11 2013-12-01                        1          220 12_048 
12 2014-09-01                        5          144 15_026 
13 2014-12-01                       14          382 21_001 
14 2015-07-01                        2           44 17_014 
15 2015-09-01                        1           18 20_285 
16 2015-10-01                       27          765 30_131 
17 2017-07-01                        2           99 14_037 
18 2018-07-01                       20          433 11_011 
19 2018-10-01                        6          510 21_071 
20 2019-01-01                        8          456 21_119 

Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-01-01, 2011-04-01, 2011-07-01, 20…
$ valoracion_apgar_nac_vivo_suma <dbl> 243895, 89160, 117271, 58570, 94146, 27…
$ Births_From_Apgar_Valuation    <dbl> 27817, 10115, 13208, 6574, 10531, 3089,…
$ entidad                        <dbl> 30, 26, 13, 29, 22, 6, 26, 13, 8, 2, 19…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_apgar_nac_vivo_s…¹ Births_From_Apgar_Va…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-01-01                              243895                  27817      30
 2 2011-04-01                               89160                  10115      26
 3 2011-07-01                              117271                  13208      13
 4 2012-01-01                               58570                   6574      29
 5 2012-06-01                               94146                  10531      22
 6 2012-06-01                               27512                   3089       6
 7 2012-12-01                              104070                  11762      26
 8 2013-04-01                              113462                  12763      13
 9 2013-09-01                              144414                  16283       8
10 2014-07-01                              135670                  15215       2
11 2014-09-01                              227652                  25142      19
12 2014-12-01                               59965                   6984      23
13 2015-09-01                               70840                   7960      32
14 2015-12-01                              111490                  12472      25
15 2017-07-01                              288569                  32593      30
16 2017-10-01                              195985                  22351       7
17 2017-12-01                              125557                  14141       8
18 2017-12-01                               51979                   5825      29
19 2018-06-01                               37379                   4230      18
20 2019-03-01                               23214                   2613       3
# ℹ abbreviated names: ¹​valoracion_apgar_nac_vivo_suma,
#   ²​Births_From_Apgar_Valuation
Rows: 20
Columns: 4
$ fecha_nacimiento               <date> 2011-01-01, 2011-04-01, 2012-04-01, 20…
$ valoracion_apgar_nac_vivo_suma <dbl> 114, 505, 3392, 2812, 9, 134, 3956, 404…
$ Births_From_Apgar_Valuation    <dbl> 13, 57, 376, 316, 1, 15, 444, 46, 33, 6…
$ ent_mun                        <glue> "20_460", "21_026", "27_014", "32_042"…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_apgar_nac_vivo_s…¹ Births_From_Apgar_Va…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-01-01                                 114                     13 20_460 
 2 2011-04-01                                 505                     57 21_026 
 3 2012-04-01                                3392                    376 27_014 
 4 2013-01-01                                2812                    316 32_042 
 5 2013-04-01                                   9                      1 20_376 
 6 2013-09-01                                 134                     15 21_101 
 7 2015-03-01                                3956                    444 21_015 
 8 2015-06-01                                 404                     46 22_015 
 9 2016-03-01                                 296                     33 20_498 
10 2016-10-01                                  53                      6 21_216 
11 2016-12-01                                  45                      5 20_089 
12 2017-04-01                                 609                     69 21_175 
13 2017-07-01                                 239                     27 30_002 
14 2017-09-01                                 332                     37 28_034 
15 2017-10-01                                 561                     62 14_068 
16 2017-10-01                                1168                    132 21_076 
17 2017-12-01                                 251                     28 13_079 
18 2018-01-01                                1322                    149 30_058 
19 2018-09-01                                1823                    208 12_075 
20 2019-09-01                                 744                     86 16_113 
# ℹ abbreviated names: ¹​valoracion_apgar_nac_vivo_suma,
#   ²​Births_From_Apgar_Valuation

Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-04-01, 2011-07-01, 2011-07-01…
$ valoracion_silverman_nac_vivo_suma <dbl> 3990, 11038, 3005, 863, 6168, 9940,…
$ Births_From_Silverman_Valuation    <dbl> 15179, 35543, 6873, 8883, 20870, 34…
$ entidad                            <dbl> 8, 9, 1, 31, 7, 14, 16, 16, 14, 28,…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_silverman_nac_vi…¹ Births_From_Silverma…² entidad
   <date>                                   <dbl>                  <dbl>   <dbl>
 1 2011-04-01                                3990                  15179       8
 2 2011-07-01                               11038                  35543       9
 3 2011-07-01                                3005                   6873       1
 4 2011-10-01                                 863                   8883      31
 5 2012-01-01                                6168                  20870       7
 6 2012-04-01                                9940                  34692      14
 7 2012-11-01                                3607                  22810      16
 8 2013-03-01                                4658                  23029      16
 9 2013-07-01                               10322                  37414      14
10 2013-09-01                                1986                  15702      28
11 2016-04-01                                1638                   7713      17
12 2016-06-01                                2930                   9928      22
13 2016-09-01                                4961                  15142       5
14 2017-01-01                                8676                  32983      14
15 2017-03-01                                3444                  27446      30
16 2017-07-01                               10817                  29390       9
17 2017-12-01                                2417                   9238      22
18 2017-12-01                                1491                   6278       1
19 2018-12-01                                4069                  12278      28
20 2018-12-01                                1908                  10275      13
# ℹ abbreviated names: ¹​valoracion_silverman_nac_vivo_suma,
#   ²​Births_From_Silverman_Valuation
Rows: 20
Columns: 4
$ fecha_nacimiento                   <date> 2011-07-01, 2012-07-01, 2012-10-01…
$ valoracion_silverman_nac_vivo_suma <dbl> 0, 47, 16, 113, 17, 3, 1, 1, 0, 572…
$ Births_From_Silverman_Valuation    <dbl> 105, 166, 95, 240, 45, 147, 29, 14,…
$ ent_mun                            <glue> "25_005", "21_205", "21_067", "15_…
# A tibble: 20 × 4
   fecha_nacimiento valoracion_silverman_nac_vi…¹ Births_From_Silverma…² ent_mun
   <date>                                   <dbl>                  <dbl> <glue> 
 1 2011-07-01                                   0                    105 25_005 
 2 2012-07-01                                  47                    166 21_205 
 3 2012-10-01                                  16                     95 21_067 
 4 2013-04-01                                 113                    240 15_009 
 5 2014-07-01                                  17                     45 07_093 
 6 2015-01-01                                   3                    147 31_038 
 7 2015-07-01                                   1                     29 30_156 
 8 2015-09-01                                   1                     14 08_999 
 9 2016-06-01                                   0                     34 10_002 
10 2017-01-01                                 572                    243 07_077 
11 2017-06-01                                   0                     14 20_102 
12 2017-09-01                                   6                     26 26_069 
13 2017-12-01                                   2                     11 05_026 
14 2018-01-01                                   2                     39 30_166 
15 2018-06-01                                   0                     22 30_078 
16 2018-09-01                                 111                    756 30_044 
17 2018-12-01                                   2                     20 32_031 
18 2019-03-01                                   9                     18 13_047 
19 2019-06-01                                   3                     51 15_055 
20 2019-06-01                                  17                    133 24_053 
# ℹ abbreviated names: ¹​valoracion_silverman_nac_vivo_suma,
#   ²​Births_From_Silverman_Valuation

Rows: 20
Columns: 4
$ fecha_nacimiento           <date> 2011-07-01, 2011-10-01, 2012-01-01, 2012-0…
$ talla_nac_vivo_ajust_suma  <dbl> 1093035, 427966, 590900, 318052, 1096918, 1…
$ Births_From_Talla_Ajustada <dbl> 21996, 8670, 11850, 6418, 22105, 36009, 301…
$ entidad                    <dbl> 7, 31, 13, 1, 7, 30, 6, 8, 29, 9, 24, 6, 15…
# A tibble: 20 × 4
   fecha_nacimiento talla_nac_vivo_ajust_suma Births_From_Talla_Ajustada entidad
   <date>                               <dbl>                      <dbl>   <dbl>
 1 2011-07-01                         1093035                      21996       7
 2 2011-10-01                          427966                       8670      31
 3 2012-01-01                          590900                      11850      13
 4 2012-04-01                          318052                       6418       1
 5 2012-07-01                         1096918                      22105       7
 6 2012-07-01                         1799644                      36009      30
 7 2012-12-01                          151635                       3019       6
 8 2013-04-01                          721565                      14259       8
 9 2013-09-01                          322347                       6467      29
10 2014-01-01                         1566472                      31684       9
11 2014-09-01                          666336                      13304      24
12 2015-06-01                          142651                       2857       6
13 2016-06-01                         3362460                      67779      15
14 2016-10-01                         1488656                      29953      21
15 2017-01-01                         1019824                      20574       7
16 2018-03-01                          561928                      11204       2
17 2018-06-01                         1425382                      28756      21
18 2018-09-01                          556213                      10992      26
19 2018-12-01                          311186                       6259      32
20 2019-09-01                          532872                      10697      13
Rows: 20
Columns: 4
$ fecha_nacimiento           <date> 2011-01-01, 2011-04-01, 2011-10-01, 2012-0…
$ talla_nac_vivo_ajust_suma  <dbl> 559, 5583, 97, 101, 146, 15891, 4410, 8959,…
$ Births_From_Talla_Ajustada <dbl> 11, 111, 2, 2, 3, 319, 88, 180, 348, 58, 49…
$ ent_mun                    <glue> "20_061", "21_116", "20_356", "20_120", "2…
# A tibble: 20 × 4
   fecha_nacimiento talla_nac_vivo_ajust_suma Births_From_Talla_Ajustada ent_mun
   <date>                               <dbl>                      <dbl> <glue> 
 1 2011-01-01                             559                         11 20_061 
 2 2011-04-01                            5583                        111 21_116 
 3 2011-10-01                              97                          2 20_356 
 4 2012-01-01                             101                          2 20_120 
 5 2012-07-01                             146                          3 20_355 
 6 2012-07-01                           15891                        319 12_012 
 7 2012-10-01                            4410                         88 12_013 
 8 2013-09-01                            8959                        180 30_133 
 9 2014-06-01                           17149                        348 23_002 
10 2015-06-01                            2892                         58 24_034 
11 2015-09-01                           24637                        493 21_154 
12 2016-06-01                            5394                        107 21_116 
13 2016-07-01                            8661                        172 17_003 
14 2017-07-01                             390                          8 31_051 
15 2017-12-01                              50                          1 20_522 
16 2018-03-01                             150                          3 26_028 
17 2018-03-01                             596                         12 21_005 
18 2019-06-01                           10165                        204 24_032 
19 2019-09-01                             652                         13 24_009 
20 2019-09-01                           16974                        341 19_019 

Rows: 20
Columns: 4
$ fecha_nacimiento          <date> 2011-01-01, 2011-07-01, 2012-01-01, 2012-01…
$ peso_nac_vivo_ajust_suma  <dbl> 10001653, 47678702, 24908800, 19185226, 1838…
$ Births_From_Peso_Ajustado <dbl> 3125, 15159, 7768, 6207, 5755, 3367, 8569, 1…
$ entidad                   <dbl> 4, 12, 10, 29, 23, 6, 31, 13, 3, 22, 32, 23,…
# A tibble: 20 × 4
   fecha_nacimiento peso_nac_vivo_ajust_suma Births_From_Peso_Ajustado entidad
   <date>                              <dbl>                     <dbl>   <dbl>
 1 2011-01-01                       10001653                      3125       4
 2 2011-07-01                       47678702                     15159      12
 3 2012-01-01                       24908800                      7768      10
 4 2012-01-01                       19185226                      6207      29
 5 2012-04-01                       18389661                      5755      23
 6 2012-09-01                       10996318                      3367       6
 7 2012-10-01                       26459012                      8569      31
 8 2013-01-01                       36466513                     11696      13
 9 2013-03-01                        8771323                      2657       3
10 2013-03-01                       28720110                      9211      22
11 2013-09-01                       23594241                      7516      32
12 2014-03-01                       19124014                      6004      23
13 2014-07-01                       28638379                      9305      31
14 2015-03-01                       12111148                      3816       4
15 2016-01-01                       85917216                     28195       9
16 2017-04-01                      101870424                     32273      14
17 2017-06-01                       23046109                      7367      32
18 2017-12-01                       39888365                     12214       2
19 2018-07-01                       56364192                     18069       7
20 2018-09-01                       22422975                      7180      32
Rows: 20
Columns: 4
$ fecha_nacimiento          <date> 2011-01-01, 2011-07-01, 2012-04-01, 2012-09…
$ peso_nac_vivo_ajust_suma  <dbl> 154995, 452780, 410614, 135045, 91320, 36931…
$ Births_From_Peso_Ajustado <dbl> 51, 144, 129, 42, 29, 118, 7, 42, 4, 707, 26…
$ ent_mun                   <glue> "32_007", "13_074", "13_054", "16_086", "19…
# A tibble: 20 × 4
   fecha_nacimiento peso_nac_vivo_ajust_suma Births_From_Peso_Ajustado ent_mun
   <date>                              <dbl>                     <dbl> <glue> 
 1 2011-01-01                         154995                        51 32_007 
 2 2011-07-01                         452780                       144 13_074 
 3 2012-04-01                         410614                       129 13_054 
 4 2012-09-01                         135045                        42 16_086 
 5 2012-09-01                          91320                        29 19_024 
 6 2012-09-01                         369312                       118 12_056 
 7 2012-10-01                          21300                         7 20_179 
 8 2013-06-01                         135800                        42 20_031 
 9 2013-09-01                          12820                         4 20_320 
10 2014-12-01                        2288433                       707 10_012 
11 2015-07-01                          79830                        26 31_027 
12 2015-12-01                         458450                       146 24_010 
13 2016-03-01                           6110                         2 20_523 
14 2017-09-01                         814565                       258 24_021 
15 2018-06-01                         255718                        86 32_037 
16 2018-09-01                         123585                        40 24_045 
17 2018-09-01                         377432                       118 22_009 
18 2018-12-01                           3450                         1 26_010 
19 2019-04-01                         297895                        99 21_134 
20 2019-10-01                         385425                       122 30_073 

Rows: 20
Columns: 4
$ fecha_nacimiento       <date> 2012-04-01, 2012-04-01, 2012-10-01, 2012-12-01…
$ edad_madre_suma        <dbl> 272403, 215517, 195921, 378203, 207579, 206763,…
$ Births_From_edad_madre <dbl> 10843, 8520, 7806, 15204, 8415, 8161, 12760, 15…
$ entidad                <dbl> 25, 17, 17, 12, 10, 31, 13, 5, 9, 24, 11, 22, 2…
# A tibble: 20 × 4
   fecha_nacimiento edad_madre_suma Births_From_edad_madre entidad
   <date>                     <dbl>                  <dbl>   <dbl>
 1 2012-04-01                272403                  10843      25
 2 2012-04-01                215517                   8520      17
 3 2012-10-01                195921                   7806      17
 4 2012-12-01                378203                  15204      12
 5 2013-01-01                207579                   8415      10
 6 2013-01-01                206763                   8161      31
 7 2013-04-01                317049                  12760      13
 8 2014-06-01                374819                  15227       5
 9 2014-07-01                932161                  35251       9
10 2014-09-01                353884                  13876      24
11 2014-10-01                765039                  30127      11
12 2015-03-01                257567                   9916      22
13 2015-04-01                305840                  12192       2
14 2015-09-01                488397                  19263      20
15 2017-04-01                592254                  23481       7
16 2018-06-01                367907                  14773       8
17 2018-09-01                183768                   7030      23
18 2018-12-01                327326                  13056       8
19 2019-03-01                519251                  19612      19
20 2019-06-01                191924                   7433      23
Rows: 20
Columns: 4
$ fecha_nacimiento       <date> 2011-10-01, 2012-01-01, 2013-01-01, 2013-07-01…
$ edad_madre_suma        <dbl> 1975, 270, 1326, 2879, 138, 1579, 839, 160, 932…
$ Births_From_edad_madre <dbl> 78, 10, 57, 119, 5, 62, 36, 6, 39, 259, 46, 337…
$ ent_mun                <glue> "30_053", "32_033", "05_038", "17_019", "19_02…
# A tibble: 20 × 4
   fecha_nacimiento edad_madre_suma Births_From_edad_madre ent_mun
   <date>                     <dbl>                  <dbl> <glue> 
 1 2011-10-01                  1975                     78 30_053 
 2 2012-01-01                   270                     10 32_033 
 3 2013-01-01                  1326                     57 05_038 
 4 2013-07-01                  2879                    119 17_019 
 5 2013-09-01                   138                      5 19_023 
 6 2013-12-01                  1579                     62 16_070 
 7 2014-03-01                   839                     36 28_015 
 8 2014-12-01                   160                      6 20_132 
 9 2015-03-01                   932                     39 28_019 
10 2015-09-01                  6202                    259 26_025 
11 2016-01-01                  1008                     46 30_075 
12 2016-06-01                  8473                    337 23_002 
13 2017-04-01                  4329                    177 31_056 
14 2017-06-01                   741                     31 19_011 
15 2017-07-01                  1817                     71 14_114 
16 2017-12-01                  1363                     54 20_277 
17 2018-01-01                  1134                     46 30_184 
18 2019-01-01                  1416                     59 07_091 
19 2019-01-01                  7363                    285 31_041 
20 2019-10-01                  1005                     41 21_060 

Rows: 20
Columns: 9
$ fecha_nacimiento                <date> 2011-10-01, 2012-01-01, 2012-09-01, 2…
$ LUGAR_NAC_SECRETARIA_DE_SALUD   <dbl> 6676, 8544, 11760, 17212, 14972, 6926,…
$ LUGAR_NAC_UNIDAD_MEDICA_PRIVADA <dbl> 1369, 2465, 6451, 5976, 6142, 1104, 51…
$ LUGAR_NAC_IMSS                  <dbl> 4128, 1343, 3746, 6189, 5476, 1354, 52…
$ LUGAR_NAC_IMSS_OPORTUNIDADES    <dbl> 3, 3113, 2392, 3080, 2, 0, 3111, 0, 44…
$ LUGAR_NAC_OTRA_UNIDAD_PUBLICA   <dbl> 266, 116, 15, 149, 1, 163, 75, 7, 2348…
$ LUGAR_NAC_ISSSTE                <dbl> 163, 469, 573, 489, 331, 100, 418, 101…
$ Births_From_lugar_nacimiento    <dbl> 12650, 16563, 25309, 35464, 27233, 103…
$ entidad                         <dbl> 26, 20, 16, 30, 11, 27, 30, 22, 14, 11…
# A tibble: 20 × 9
   fecha_nacimiento LUGAR_NAC_SECRETARIA…¹ LUGAR_NAC_UNIDAD_MED…² LUGAR_NAC_IMSS
   <date>                            <dbl>                  <dbl>          <dbl>
 1 2011-10-01                         6676                   1369           4128
 2 2012-01-01                         8544                   2465           1343
 3 2012-09-01                        11760                   6451           3746
 4 2013-06-01                        17212                   5976           6189
 5 2014-01-01                        14972                   6142           5476
 6 2014-01-01                         6926                   1104           1354
 7 2014-03-01                        15608                   5114           5253
 8 2014-06-01                         5450                   2290           2334
 9 2015-04-01                        12133                  10964           9167
10 2015-07-01                        16893                   7322           5843
11 2016-04-01                        12451                   8674           6831
12 2016-12-01                         5347                   2033           1997
13 2017-06-01                         9156                   6796           3199
14 2017-10-01                        12762                   2095           1674
15 2017-12-01                         7832                   6987           3295
16 2017-12-01                         5977                   2872           3522
17 2018-03-01                         1904                    518           1138
18 2018-04-01                         3836                    973           2223
19 2018-12-01                         2652                   1529           1562
20 2019-09-01                         3823                   3226           4611
# ℹ abbreviated names: ¹​LUGAR_NAC_SECRETARIA_DE_SALUD,
#   ²​LUGAR_NAC_UNIDAD_MEDICA_PRIVADA
# ℹ 5 more variables: LUGAR_NAC_IMSS_OPORTUNIDADES <dbl>,
#   LUGAR_NAC_OTRA_UNIDAD_PUBLICA <dbl>, LUGAR_NAC_ISSSTE <dbl>,
#   Births_From_lugar_nacimiento <dbl>, entidad <dbl>
Rows: 20
Columns: 9
$ fecha_nacimiento                <date> 2011-04-01, 2012-01-01, 2012-01-01, 2…
$ LUGAR_NAC_SECRETARIA_DE_SALUD   <dbl> 26, 0, 51, 26, 22, 15, 3, 4, 43, 8, 3,…
$ LUGAR_NAC_UNIDAD_MEDICA_PRIVADA <dbl> 16, 0, 0, 24, 3, 4, 5, 0, 1, 0, 0, 2, …
$ LUGAR_NAC_IMSS                  <dbl> 1, 0, 1, 0, 0, 0, 7, 0, 31, 0, 0, 5, 1…
$ LUGAR_NAC_IMSS_OPORTUNIDADES    <dbl> 0, 2, 6, 16, 2, 0, 3, 7, 0, 18, 0, 0, …
$ LUGAR_NAC_OTRA_UNIDAD_PUBLICA   <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3,…
$ LUGAR_NAC_ISSSTE                <dbl> 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 5, 1,…
$ Births_From_lugar_nacimiento    <dbl> 43, 2, 79, 67, 27, 19, 21, 12, 75, 32,…
$ ent_mun                         <glue> "29_012", "20_127", "07_076", "16_029…
# A tibble: 20 × 9
   fecha_nacimiento LUGAR_NAC_SECRETARIA…¹ LUGAR_NAC_UNIDAD_MED…² LUGAR_NAC_IMSS
   <date>                            <dbl>                  <dbl>          <dbl>
 1 2011-04-01                           26                     16              1
 2 2012-01-01                            0                      0              0
 3 2012-01-01                           51                      0              1
 4 2012-02-01                           26                     24              0
 5 2012-04-01                           22                      3              0
 6 2012-07-01                           15                      4              0
 7 2013-01-01                            3                      5              7
 8 2013-06-01                            4                      0              0
 9 2013-12-01                           43                      1             31
10 2014-03-01                            8                      0              0
11 2014-09-01                            3                      0              0
12 2014-12-01                           29                      2              5
13 2015-06-01                           14                     13             13
14 2016-06-01                            6                      0              0
15 2016-07-01                          132                    166             89
16 2017-06-01                           16                      0              0
17 2018-06-01                           74                     33             23
18 2018-09-01                            2                      0              0
19 2018-10-01                          563                    379            319
20 2018-12-01                            0                      2              0
# ℹ abbreviated names: ¹​LUGAR_NAC_SECRETARIA_DE_SALUD,
#   ²​LUGAR_NAC_UNIDAD_MEDICA_PRIVADA
# ℹ 5 more variables: LUGAR_NAC_IMSS_OPORTUNIDADES <dbl>,
#   LUGAR_NAC_OTRA_UNIDAD_PUBLICA <dbl>, LUGAR_NAC_ISSSTE <dbl>,
#   Births_From_lugar_nacimiento <dbl>, ent_mun <glue>

Rows: 20
Columns: 5
$ fecha_nacimiento             <date> 2013-01-01, 2013-09-01, 2013-10-01, 2013…
$ Madre_Sobrevivio_SI          <dbl> 8161, 24231, 29960, 13379, 8780, 12018, 1…
$ Madre_Sobrevivio_NO          <dbl> 0, 0, 2, 1, 3, 2, 1, 2, 0, 1, 0, 4, 0, 1,…
$ Births_From_Madre_Sobrevivio <dbl> 8161, 24231, 29962, 13380, 8783, 12020, 1…
$ entidad                      <dbl> 31, 19, 11, 25, 10, 25, 2, 11, 2, 11, 10,…
# A tibble: 20 × 5
   fecha_nacimiento Madre_Sobrevivio_SI Madre_Sobrevivio_NO
   <date>                         <dbl>               <dbl>
 1 2013-01-01                      8161                   0
 2 2013-09-01                     24231                   0
 3 2013-10-01                     29960                   2
 4 2013-12-01                     13379                   1
 5 2014-06-01                      8780                   3
 6 2014-06-01                     12018                   2
 7 2016-04-01                     11807                   1
 8 2016-07-01                     30448                   2
 9 2017-03-01                     12015                   0
10 2017-07-01                     31437                   1
11 2017-09-01                      9151                   0
12 2018-01-01                     29803                   4
13 2018-01-01                     28171                   0
14 2018-04-01                     27160                   1
15 2018-04-01                      7801                   0
16 2019-03-01                     10824                   0
17 2019-07-01                     28328                   0
18 2019-09-01                      9641                   0
19 2019-09-01                     10936                   0
20 2019-09-01                     13575                   1
# ℹ 2 more variables: Births_From_Madre_Sobrevivio <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento             <date> 2013-01-01, 2013-06-01, 2013-12-01, 2015…
$ Madre_Sobrevivio_SI          <dbl> 7, 89, 9, 125, 226, 86, 10, 0, 57, 2, 0, …
$ Madre_Sobrevivio_NO          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ Births_From_Madre_Sobrevivio <dbl> 7, 89, 9, 125, 226, 86, 10, 0, 57, 2, 0, …
$ ent_mun                      <glue> "20_253", "20_171", "13_020", "12_041", …
# A tibble: 20 × 5
   fecha_nacimiento Madre_Sobrevivio_SI Madre_Sobrevivio_NO
   <date>                         <dbl>               <dbl>
 1 2013-01-01                         7                   0
 2 2013-06-01                        89                   0
 3 2013-12-01                         9                   0
 4 2015-12-01                       125                   0
 5 2016-03-01                       226                   0
 6 2016-04-01                        86                   0
 7 2016-07-01                        10                   0
 8 2017-03-01                         0                   0
 9 2017-10-01                        57                   0
10 2017-12-01                         2                   0
11 2018-01-01                         0                   0
12 2018-03-01                        31                   0
13 2018-03-01                         7                   0
14 2018-04-01                        39                   0
15 2018-04-01                       258                   0
16 2019-03-01                        78                   0
17 2019-06-01                       319                   0
18 2019-07-01                        15                   0
19 2019-09-01                         1                   0
20 2019-09-01                        62                   0
# ℹ 2 more variables: Births_From_Madre_Sobrevivio <dbl>, ent_mun <glue>

Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2012-01-01, 2012-04-01, 2012-04-01, 2012-07-01,…
$ SI_Recibio_Vitamin_k  <dbl> 26638, 7873, 5191, 6078, 12179, 5967, 8308, 2540…
$ NO_Recibio_Vitamin_k  <dbl> 3040, 751, 1506, 1571, 1041, 1362, 906, 2332, 26…
$ Births_From_Vitamin_k <dbl> 29678, 8624, 6697, 7649, 13220, 7329, 9214, 2773…
$ entidad               <dbl> 21, 26, 31, 23, 27, 32, 26, 11, 4, 30, 23, 9, 6,…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2012-01-01                      26638                 3040
 2 2012-04-01                       7873                  751
 3 2012-04-01                       5191                 1506
 4 2012-07-01                       6078                 1571
 5 2013-10-01                      12179                 1041
 6 2013-12-01                       5967                 1362
 7 2014-03-01                       8308                  906
 8 2014-04-01                      25407                 2332
 9 2015-09-01                       4396                  268
10 2015-10-01                      31162                 1798
11 2016-09-01                       7557                  374
12 2016-10-01                      25914                 2978
13 2016-12-01                       2389                  480
14 2017-06-01                      30571                 1291
15 2017-06-01                      21097                  787
16 2017-10-01                       7166                  232
17 2018-09-01                      28419                 2263
18 2019-01-01                      19179                 2374
19 2019-06-01                      15792                  643
20 2019-10-01                      25252                  870
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2012-01-01, 2012-08-01, 2012-09-01, 2014-03-01,…
$ SI_Recibio_Vitamin_k  <dbl> 27366, 21927, 7814, 2308, 5874, 9881, 10808, 878…
$ NO_Recibio_Vitamin_k  <dbl> 5613, 1740, 11761, 498, 1934, 533, 3641, 2349, 1…
$ Births_From_Vitamin_k <dbl> 32979, 23667, 19575, 2806, 7808, 10414, 14449, 1…
$ entidad               <dbl> 14, 16, 19, 6, 32, 25, 5, 24, 32, 2, 29, 1, 29, …
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2012-01-01                      27366                 5613
 2 2012-08-01                      21927                 1740
 3 2012-09-01                       7814                11761
 4 2014-03-01                       2308                  498
 5 2014-09-01                       5874                 1934
 6 2015-03-01                       9881                  533
 7 2015-09-01                      10808                 3641
 8 2015-12-01                       8789                 2349
 9 2016-06-01                       6077                 1596
10 2016-09-01                      14149                  408
11 2017-06-01                       5769                  264
12 2017-06-01                       6861                   77
13 2017-09-01                       6118                  207
14 2017-12-01                      10383                  426
15 2017-12-01                       6172                   74
16 2018-03-01                       2305                   46
17 2018-03-01                       9075                  469
18 2018-12-01                       5494                  134
19 2019-03-01                      10394                 1651
20 2019-09-01                      13431                  218
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, entidad <dbl>
Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2011-01-01, 2011-10-01, 2011-10-01, 2012-01-01,…
$ SI_Recibio_Vitamin_k  <dbl> 31, 271, 38, 46, 2, 21, 53, 4, 62, 2, 142, 162, …
$ NO_Recibio_Vitamin_k  <dbl> 5, 935, 4, 52, 2, 2, 3, 0, 1, 0, 7, 38, 9, 5, 0,…
$ Births_From_Vitamin_k <dbl> 36, 1206, 42, 98, 4, 23, 56, 4, 63, 2, 149, 200,…
$ ent_mun               <glue> "30_031", "19_048", "30_152", "32_034", "07_118…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2011-01-01                         31                    5
 2 2011-10-01                        271                  935
 3 2011-10-01                         38                    4
 4 2012-01-01                         46                   52
 5 2012-07-01                          2                    2
 6 2013-01-01                         21                    2
 7 2013-09-01                         53                    3
 8 2014-06-01                          4                    0
 9 2015-03-01                         62                    1
10 2015-03-01                          2                    0
11 2015-03-01                        142                    7
12 2015-09-01                        162                   38
13 2016-03-01                          1                    9
14 2016-04-01                          9                    5
15 2016-10-01                         22                    0
16 2017-12-01                        305                    6
17 2018-09-01                        218                    7
18 2019-03-01                        858                   15
19 2019-06-01                         39                    0
20 2019-10-01                          8                    3
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, ent_mun <glue>
Rows: 20
Columns: 5
$ fecha_nacimiento      <date> 2012-01-01, 2012-01-01, 2012-07-01, 2012-12-01,…
$ SI_Recibio_Vitamin_k  <dbl> 16, 43, 134, 129, 61, 77, 131, 43, 1147, 24, 313…
$ NO_Recibio_Vitamin_k  <dbl> 2, 9, 11, 3, 10, 3, 123, 4, 50, 0, 29, 126, 0, 0…
$ Births_From_Vitamin_k <dbl> 18, 52, 145, 132, 71, 80, 254, 47, 1197, 24, 342…
$ ent_mun               <glue> "21_159", "12_064", "15_007", "16_073", "12_069…
# A tibble: 20 × 5
   fecha_nacimiento SI_Recibio_Vitamin_k NO_Recibio_Vitamin_k
   <date>                          <dbl>                <dbl>
 1 2012-01-01                         16                    2
 2 2012-01-01                         43                    9
 3 2012-07-01                        134                   11
 4 2012-12-01                        129                    3
 5 2012-12-01                         61                   10
 6 2013-01-01                         77                    3
 7 2013-04-01                        131                  123
 8 2013-12-01                         43                    4
 9 2014-09-01                       1147                   50
10 2014-09-01                         24                    0
11 2015-01-01                        313                   29
12 2016-01-01                        207                  126
13 2016-06-01                          0                    0
14 2017-03-01                          3                    0
15 2017-04-01                        183                    6
16 2017-04-01                        146                    1
17 2018-06-01                        129                   17
18 2018-06-01                         87                    6
19 2018-07-01                        403                    6
20 2019-06-01                         21                    1
# ℹ 2 more variables: Births_From_Vitamin_k <dbl>, ent_mun <glue>