1.5.1.2 Homework problem 1: Recreate the chart above in Esquisse
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(esquisse)library(ggplot2)
# the URL of our data on GitHubgithub_url <-"https://raw.githubusercontent.com/t-emery/sais-susfin_data/main/datasets/etf_comparison-2022-10-03.csv"# read the data from GitHubblackrock_esg_vs_non_esg_etf <- github_url |>read_csv() |># select the four columns we will use in our anlaysis hereselect(company_name:standard_etf)
Rows: 537 Columns: 14
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (4): ticker, company_name, sector, esg_uw_ow
dbl (7): esg_etf, standard_etf, esg_tilt, esg_tilt_z_score, esg_tilt_rank, e...
lgl (3): in_esg_only, in_standard_only, in_on_index_only
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ggplot(blackrock_esg_vs_non_esg_etf) +aes(x = esg_etf, y = standard_etf, colour = sector) +geom_point(shape ="circle", size =1.5) +geom_smooth(span =0.75) +scale_color_hue(direction =-1) +scale_x_continuous(trans ="log10") +scale_y_continuous(trans ="log10") +labs(x ="ESG ETF (ESGU)",y ="Standard ETF (IVV)",title ="We made this chart using Esquisse!",subtitle ="It's a great tool for learning ggplot2, even it has its limitations.",caption ="Wendy Lei" ) +theme_minimal() +facet_wrap(vars(sector))
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Transformation introduced infinite values in continuous y-axis
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
1.5.1.3 Homework problem 2: exploring the outliers
blackrock_esg_vs_non_esg_etf_long <- blackrock_esg_vs_non_esg_etf |># we'll learn a lot more about long data & pivot_longer() in future weeks. pivot_longer(cols =contains("etf"), names_to ="fund_type", values_to ="weight") |># case_when() is like an extended "if else"mutate(fund_type =case_when(fund_type =="esg_etf"~"ESG ETF (ESGU)", fund_type =="standard_etf"~"Standard ETF (IVV)"))blackrock_esg_vs_non_esg_etf_long
# A tibble: 1,074 × 4
company_name sector fund_type weight
<chr> <chr> <chr> <dbl>
1 PRUDENTIAL FINANCIAL INC Financials ESG ETF (ESGU) 0.537
2 PRUDENTIAL FINANCIAL INC Financials Standard ETF (IV… 0.106
3 GENERAL MILLS INC Consumer Staples ESG ETF (ESGU) 0.552
4 GENERAL MILLS INC Consumer Staples Standard ETF (IV… 0.151
5 KELLOGG Consumer Staples ESG ETF (ESGU) 0.453
6 KELLOGG Consumer Staples Standard ETF (IV… 0.0592
7 AUTOMATIC DATA PROCESSING INC Information Technology ESG ETF (ESGU) 0.649
8 AUTOMATIC DATA PROCESSING INC Information Technology Standard ETF (IV… 0.312
9 ECOLAB INC Materials ESG ETF (ESGU) 0.441
10 ECOLAB INC Materials Standard ETF (IV… 0.118
# ℹ 1,064 more rows
library(dplyr)library(ggplot2)blackrock_esg_vs_non_esg_etf_long %>%#limit the weight variable to companies over a 1% weightfilter(weight >=1L & weight <=7L) %>%ggplot() +#Choose a Point chart and assign variables to aestheticsaes(x = weight, y = company_name, colour = fund_type, size = weight) +geom_point(shape ="circle") +scale_color_hue(direction =1) +#Add meaningful titles and labels. Put your name as the captionlabs(title ="ESG fund V.S. Non- ESG Fund", subtitle ="Weight", caption ="Wendy Lei") +theme_minimal()