Find the characteristic polynomial of the matrix A= \(\begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \\ \end{bmatrix}\)

\(pA(x) = det \left( \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \\ \end{bmatrix} - \begin{bmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \\ \end{bmatrix} \right)\)

\(= det \left(\begin{bmatrix} 3-x & 2 & 1 \\ 0 & 1-x & 1 \\ 1 & 2 & -x \\ \end{bmatrix} \right)\)

\(= 3-x\cdot\begin{vmatrix} 1-x & 1 \\ 2 & -x \\ \end{vmatrix} - 2\cdot\begin{vmatrix} 0 & 1 \\ 1 & -x \\ \end{vmatrix} + 1\cdot\begin{vmatrix} 0 & 1-x \\ 1 & 2 \\ \end{vmatrix}\)

\(= (3-x)(-x+x^2-2)-2(-1) + x-1\)

\(= -3x +x^2+3x^2-x^3-6+2x+2+x-1\)

\(-x^3+4x^2+0-5\)

The characteristic polynomial is: \(-x^3+4x^2-5\)