\((-12 - \lambda)(13 - \lambda) - (30 * 5)\)
\(-156 - 13\lambda + 12\lambda +\) \(\lambda^2\)
\((\lambda-3)(\lambda+2)\)
eigenvalues \(\lambda\) = 3, −2
algebraic multiplicities (3) = 1 and (−2) = 1.
For \(\lambda\) = 3
Find the reduced row echelon form of \(A - 3I_{2}\)
A = matrix(c(-12,30,-5,13), nrow = 2, byrow=T)
I = matrix(c(1,0,0,1), nrow = 2, byrow=T)
A3 <- A - (3 * I)
A3[2,] <- (A3[2,] * -3) + A3[1,]
A3[1,] <- A3[1,] / -15
A3
## [,1] [,2]
## [1,] 1 -2
## [2,] 0 0
\(E_{3}\) =
\[\begin{bmatrix} 2\\ 1 \end{bmatrix}\]For \(\lambda\) = -2
Find the reduced row echelon form of \(A + 2I_{2}\)
A_2 <- A - (-2 * I)
A_2
## [,1] [,2]
## [1,] -10 30
## [2,] -5 15
A_2[2,] <- (A_2[2,] * - 2) + A_2[1,]
A_2[1,] <- A_2[1,] / -10
A_2
## [,1] [,2]
## [1,] 1 -3
## [2,] 0 0
\(E_{-2}\) =
\[\begin{bmatrix} 3\\ 1 \end{bmatrix}\]