https://www.youtube.com/watch?v=UeMpYEktLfU&ab_channel=Comunicaci%C3%B3nNum%C3%A9rica
El análisis exploratorio de datos (EDA por sus siglas en inglés) implica el uso de gráficos y visualizaciones para explorar y analizar un conjunto de datos. El objetivo es explorar, investigar y aprender, no confirmar hipótesis estadísticas.
El análisis exploratorio de datos es una potente herramienta para explorar un conjunto de datos. Incluso cuando su objetivo es efectuar análisis planificados, el EDA puede utilizarse para limpiar datos, para análisis de subgrupos o simplemente para comprender mejor los datos. Un paso inicial importante en cualquier análisis de datos es representar los datos gráficamente.
No gráfico: Calcula estadísticas descriptivas de las variables
Gráfico: Calcula estadísticas de forma gráfica
Univariado: Analiza una sola variable a la vez
Multivariado: Analiza dos o más variables
A su vez, cada uno de esas dividisiones puede subdividirse según los tipos de datos con los que trabajemos: cateógicos o numéricos.
Lo primero que tenemos que hacer es cargar los paquetes que vamos a utilizar para el análisis. En este caso vamos a usar:
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(readxl)
library(kableExtra)
##
## Attaching package: 'kableExtra'
##
## The following object is masked from 'package:dplyr':
##
## group_rows
(Recordar que si no ha instalado estos paquetes debe correr primero el comando: install.packages(“nombre del paquete”))
Puedes usar el programa R como una calculadora, basta con conocer cuáles son los signos y comandos a utilizar para realizar las opereaciones. Copia los comandos en tu script de R y ejecútalos para ver los resultados.
#suma
2+2
## [1] 4
#multiplicación
2*2
## [1] 4
#división
2/2
## [1] 1
#potencia
4^2
## [1] 16
#raíz cuadrada
sqrt(16)
## [1] 4
R ya incorpora una serie de bases de datos que te pueden resultar de utilidad para empezar a explorar las posibilidades de análisis estadístico que te ofrece este programa.
Como ejemplo vamos a explorara la base de datos llamada “cars”.
#cargar la base
data(cars)
#visualizar los encabezados
head(cars)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
#resumir con algunas estadísticas las variables de la base
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
Puedes agregar fácilmente gráficos a tu análisis. Por ejemplo:
data(pressure)
head(pressure)
## temperature pressure
## 1 0 0.0002
## 2 20 0.0012
## 3 40 0.0060
## 4 60 0.0300
## 5 80 0.0900
## 6 100 0.2700
hist(pressure$temperature)
edad<-c(11,12,15,20,41)
edad
## [1] 11 12 15 20 41
altura=c(50,65,120,156,182)
altura
## [1] 50 65 120 156 182
datos=data.frame(edad,altura)
datos
## edad altura
## 1 11 50
## 2 12 65
## 3 15 120
## 4 20 156
## 5 41 182
#base<-read_excel("base.xlsx")