Goal: predict the prices of IKEA items Click here for the data
#Import Data
ikea <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv')
## New names:
## Rows: 3694 Columns: 14
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): name, category, old_price, link, other_colors, short_description, d... dbl
## (6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(ikea)
| Name | ikea |
| Number of rows | 3694 |
| Number of columns | 14 |
| _______________________ | |
| Column type frequency: | |
| character | 7 |
| logical | 1 |
| numeric | 6 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| name | 0 | 1 | 3 | 27 | 0 | 607 | 0 |
| category | 0 | 1 | 4 | 36 | 0 | 17 | 0 |
| old_price | 0 | 1 | 4 | 13 | 0 | 365 | 0 |
| link | 0 | 1 | 52 | 163 | 0 | 2962 | 0 |
| other_colors | 0 | 1 | 2 | 3 | 0 | 2 | 0 |
| short_description | 0 | 1 | 3 | 63 | 0 | 1706 | 0 |
| designer | 0 | 1 | 3 | 1261 | 0 | 381 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| sellable_online | 0 | 1 | 0.99 | TRU: 3666, FAL: 28 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| …1 | 0 | 1.00 | 1846.50 | 1066.51 | 0 | 923.25 | 1846.5 | 2769.75 | 3693 | ▇▇▇▇▇ |
| item_id | 0 | 1.00 | 48632396.79 | 28887094.10 | 58487 | 20390574.00 | 49288078.0 | 70403572.75 | 99932615 | ▇▇▇▇▇ |
| price | 0 | 1.00 | 1078.21 | 1374.65 | 3 | 180.90 | 544.7 | 1429.50 | 9585 | ▇▁▁▁▁ |
| depth | 1463 | 0.60 | 54.38 | 29.96 | 1 | 38.00 | 47.0 | 60.00 | 257 | ▇▃▁▁▁ |
| height | 988 | 0.73 | 101.68 | 61.10 | 1 | 67.00 | 83.0 | 124.00 | 700 | ▇▂▁▁▁ |
| width | 589 | 0.84 | 104.47 | 71.13 | 1 | 60.00 | 80.0 | 140.00 | 420 | ▇▅▂▁▁ |
data <- ikea %>%
# Treating missing values
select(-depth, -height, -width, -old_price, -link, -designer) %>%
na.omit() %>%
# Log Transformation variables with positive skewed distribution
mutate(price = log(price))
Identify good predictors:
category
data %>%
ggplot(aes(price, as.factor(category))) +
geom_boxplot()
short_description
data %>%
# tokenize description
unnest_tokens(output = word, input = short_description) %>%
# calculate avg word per item
group_by(word) %>%
summarise(price = mean(price),
n = n()) %>%
ungroup() %>%
filter(n > 10) %>%
slice_max(order_by = price, n = 20) %>%
# Plot
ggplot(aes(price, fct_reorder(word, price))) +
geom_point()
# Step 1: Prepare data
data_binarized_tbl <- data %>%
select(-item_id, -short_description, -...1) %>%
binarize()
data_binarized_tbl %>% glimpse()
## Rows: 3,694
## Columns: 41
## $ name__BEKANT <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__BESTÅ <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__EKET <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__ELVARLI <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__GRÖNLID <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__HAVSTA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__HEMNES <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__IVAR <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__JONAXEL <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__KALLAX <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__LIDHULT <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__NORDLI <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__PAX <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__PLATSA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `name__STUVA_/_FRITIDS` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__TROFAST <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__VALLENTUNA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__VIMLE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `name__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ category__Bar_furniture <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ category__Beds <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Bookcases_&_shelving_units` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Cabinets_&_cupboards` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Chairs <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Chests_of_drawers_&_drawer_units` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Children's_furniture` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Nursery_furniture <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Outdoor_furniture <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Sofas_&_armchairs` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Tables_&_desks` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__TV_&_media_furniture` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Wardrobes <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `price__-Inf_5.19790750771426` <dbl> 0, 0, 0, 1, 0, 0, 1, 0, 1…
## $ price__5.19790750771426_6.30023503272028 <dbl> 1, 0, 0, 0, 1, 1, 0, 1, 0…
## $ price__6.30023503272028_7.26507835784303 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ price__7.26507835784303_Inf <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0…
## $ sellable_online__1 <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 1…
## $ `sellable_online__-OTHER` <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 0…
## $ other_colors__No <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1…
## $ other_colors__Yes <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0…
# Step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
correlate(price__7.26507835784303_Inf)
data_corr_tbl
## # A tibble: 41 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 price 7.26507835784303_Inf 1
## 2 price -Inf_5.19790750771426 -0.334
## 3 price 6.30023503272028_7.26507835784303 -0.333
## 4 price 5.19790750771426_6.30023503272028 -0.333
## 5 category Wardrobes 0.253
## 6 name PAX 0.250
## 7 category Sofas_&_armchairs 0.178
## 8 name -OTHER -0.167
## 9 category Bookcases_&_shelving_units -0.162
## 10 name LIDHULT 0.143
## # ℹ 31 more rows
# Step 3: Plot
data_corr_tbl %>%
plot_correlation_funnel()
## Warning: ggrepel: 31 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps