Chapter 3: Classification using Nearest Neighbors

Example: Classifying Cancer Samples

Step 2: Exploring and preparing the data

# import the CSV file
wbcd <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)

# examine the structure of the wbcd data frame
str(wbcd)
## 'data.frame':    569 obs. of  32 variables:
##  $ id               : int  87139402 8910251 905520 868871 9012568 906539 925291 87880 862989 89827 ...
##  $ diagnosis        : chr  "B" "B" "B" "B" ...
##  $ radius_mean      : num  12.3 10.6 11 11.3 15.2 ...
##  $ texture_mean     : num  12.4 18.9 16.8 13.4 13.2 ...
##  $ perimeter_mean   : num  78.8 69.3 70.9 73 97.7 ...
##  $ area_mean        : num  464 346 373 385 712 ...
##  $ smoothness_mean  : num  0.1028 0.0969 0.1077 0.1164 0.0796 ...
##  $ compactness_mean : num  0.0698 0.1147 0.078 0.1136 0.0693 ...
##  $ concavity_mean   : num  0.0399 0.0639 0.0305 0.0464 0.0339 ...
##  $ points_mean      : num  0.037 0.0264 0.0248 0.048 0.0266 ...
##  $ symmetry_mean    : num  0.196 0.192 0.171 0.177 0.172 ...
##  $ dimension_mean   : num  0.0595 0.0649 0.0634 0.0607 0.0554 ...
##  $ radius_se        : num  0.236 0.451 0.197 0.338 0.178 ...
##  $ texture_se       : num  0.666 1.197 1.387 1.343 0.412 ...
##  $ perimeter_se     : num  1.67 3.43 1.34 1.85 1.34 ...
##  $ area_se          : num  17.4 27.1 13.5 26.3 17.7 ...
##  $ smoothness_se    : num  0.00805 0.00747 0.00516 0.01127 0.00501 ...
##  $ compactness_se   : num  0.0118 0.03581 0.00936 0.03498 0.01485 ...
##  $ concavity_se     : num  0.0168 0.0335 0.0106 0.0219 0.0155 ...
##  $ points_se        : num  0.01241 0.01365 0.00748 0.01965 0.00915 ...
##  $ symmetry_se      : num  0.0192 0.035 0.0172 0.0158 0.0165 ...
##  $ dimension_se     : num  0.00225 0.00332 0.0022 0.00344 0.00177 ...
##  $ radius_worst     : num  13.5 11.9 12.4 11.9 16.2 ...
##  $ texture_worst    : num  15.6 22.9 26.4 15.8 15.7 ...
##  $ perimeter_worst  : num  87 78.3 79.9 76.5 104.5 ...
##  $ area_worst       : num  549 425 471 434 819 ...
##  $ smoothness_worst : num  0.139 0.121 0.137 0.137 0.113 ...
##  $ compactness_worst: num  0.127 0.252 0.148 0.182 0.174 ...
##  $ concavity_worst  : num  0.1242 0.1916 0.1067 0.0867 0.1362 ...
##  $ points_worst     : num  0.0939 0.0793 0.0743 0.0861 0.0818 ...
##  $ symmetry_worst   : num  0.283 0.294 0.3 0.21 0.249 ...
##  $ dimension_worst  : num  0.0677 0.0759 0.0788 0.0678 0.0677 ...
# drop the id feature
wbcd <- wbcd[-1]
# table of diagnosis
table(wbcd$diagnosis)
## 
##   B   M 
## 357 212
#this has to be really accurate, because if there is a misclassification we can tell a healthy person that has cancer or other way around.
# recode diagnosis as a factor
wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"),
                         labels = c("Benign", "Malignant"))
table(wbcd$diagnosis)
## 
##    Benign Malignant 
##       357       212
# I printed again with the new labels.
# table or proportions with more informative labels
round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)
## 
##    Benign Malignant 
##      62.7      37.3
# summarize three numeric features
summary(wbcd[c("radius_mean", "area_mean", "smoothness_mean")])
##   radius_mean       area_mean      smoothness_mean  
##  Min.   : 6.981   Min.   : 143.5   Min.   :0.05263  
##  1st Qu.:11.700   1st Qu.: 420.3   1st Qu.:0.08637  
##  Median :13.370   Median : 551.1   Median :0.09587  
##  Mean   :14.127   Mean   : 654.9   Mean   :0.09636  
##  3rd Qu.:15.780   3rd Qu.: 782.7   3rd Qu.:0.10530  
##  Max.   :28.110   Max.   :2501.0   Max.   :0.16340
# create normalization function
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}
# test normalization function - result should be identical
normalize(c(1, 2, 3, 4, 5))
## [1] 0.00 0.25 0.50 0.75 1.00
normalize(c(10, 20, 30, 40, 50))
## [1] 0.00 0.25 0.50 0.75 1.00
#we want to make sure that al the numeric values are in the same scale
# normalize the wbcd data
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))
# confirm that normalization worked
summary(wbcd_n$area_mean)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.1174  0.1729  0.2169  0.2711  1.0000
# create training and test data
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]
#we are making the first 469 records part of the training, and from 470 to 569 part of the testing.
# create labels for training and test data

wbcd_train_labels <- wbcd[1:469, 1]
wbcd_test_labels <- wbcd[470:569, 1]

Step 3: Training a model on the data

# load the "class" library
library(class)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
                      cl = wbcd_train_labels, k = 21)
#the arguments are train, test, labels and the number of K

Step 4: Evaluating model performance

#install.packages("gmodels")
# load the "gmodels" library

library(gmodels)
## Warning: package 'gmodels' was built under R version 4.2.3
# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
           prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  100 
## 
##  
##                  | wbcd_test_pred 
## wbcd_test_labels |    Benign | Malignant | Row Total | 
## -----------------|-----------|-----------|-----------|
##           Benign |        61 |         0 |        61 | 
##                  |     1.000 |     0.000 |     0.610 | 
##                  |     0.968 |     0.000 |           | 
##                  |     0.610 |     0.000 |           | 
## -----------------|-----------|-----------|-----------|
##        Malignant |         2 |        37 |        39 | 
##                  |     0.051 |     0.949 |     0.390 | 
##                  |     0.032 |     1.000 |           | 
##                  |     0.020 |     0.370 |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |        63 |        37 |       100 | 
##                  |     0.630 |     0.370 |           | 
## -----------------|-----------|-----------|-----------|
## 
## 
#What's the ideal number of k?
#I misclassified 2 cases as benign when it was malignant.
wbcd_train2 <- wbcd_n[1:449, ]
wbcd_test2 <- wbcd_n[450:569, ]
#now im going to change the model:

wbcd_train_labels2 <- wbcd[1:449, 1]
wbcd_test_labels2 <- wbcd[450:569, 1]
wbcd_test_pred2 <- knn(train = wbcd_train2, test = wbcd_test2,
                      cl = wbcd_train_labels2, k = 21)
library(gmodels)

# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels2, y = wbcd_test_pred2,
           prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  120 
## 
##  
##                   | wbcd_test_pred2 
## wbcd_test_labels2 |    Benign | Malignant | Row Total | 
## ------------------|-----------|-----------|-----------|
##            Benign |        73 |         0 |        73 | 
##                   |     1.000 |     0.000 |     0.608 | 
##                   |     0.973 |     0.000 |           | 
##                   |     0.608 |     0.000 |           | 
## ------------------|-----------|-----------|-----------|
##         Malignant |         2 |        45 |        47 | 
##                   |     0.043 |     0.957 |     0.392 | 
##                   |     0.027 |     1.000 |           | 
##                   |     0.017 |     0.375 |           | 
## ------------------|-----------|-----------|-----------|
##      Column Total |        75 |        45 |       120 | 
##                   |     0.625 |     0.375 |           | 
## ------------------|-----------|-----------|-----------|
## 
## 

From 120 tests we told 4 people that they were benign but they actually were malignants. Accuracy = 118/200 = 98.33%. Precision = 45/(45+0) = 100% –> 100% of people that I classified as Malignant, were actually malignant. Recall = 45/ (45+2) = 95.74%
F1 Score = (2* Precision * Recall)/(Precision + Recall) = 97.82%

This is the ideal solution, testing with a sample of 450, predicting 120 and with k=21

#2 out of 120 are misclassified. Worked better than the previous model. 1.67% of wrong classifications. 
wbcd_train3 <- wbcd_n[1:449, ]
wbcd_test3 <- wbcd_n[450:569, ]
wbcd_train_labels3 <- wbcd[1:449, 1]
wbcd_test_labels3 <- wbcd[450:569, 1]
wbcd_test_pred3 <- knn(train = wbcd_train3, test = wbcd_test3,
                      cl = wbcd_train_labels3, k = 27)
# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels3, y = wbcd_test_pred3,
           prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  120 
## 
##  
##                   | wbcd_test_pred3 
## wbcd_test_labels3 |    Benign | Malignant | Row Total | 
## ------------------|-----------|-----------|-----------|
##            Benign |        73 |         0 |        73 | 
##                   |     1.000 |     0.000 |     0.608 | 
##                   |     0.948 |     0.000 |           | 
##                   |     0.608 |     0.000 |           | 
## ------------------|-----------|-----------|-----------|
##         Malignant |         4 |        43 |        47 | 
##                   |     0.085 |     0.915 |     0.392 | 
##                   |     0.052 |     1.000 |           | 
##                   |     0.033 |     0.358 |           | 
## ------------------|-----------|-----------|-----------|
##      Column Total |        77 |        43 |       120 | 
##                   |     0.642 |     0.358 |           | 
## ------------------|-----------|-----------|-----------|
## 
## 

From 120 tests we told 4 people that they were benign but they actually were malignants. Accuracy = 116/200 = 96.67%. Precision = 43/(43+0) = 100% –> 100% of people that I classified as Malignant, were actually malignant. Recall = 43/ (43+4) = 91,48%
F1 Score = (2* Precision * Recall)/(Precision + Recall) = 95.55%

This solution was better than the original one, but the 2nd solution was ideal for me with k=21, and predicting 120 patients.