tidycmprsk::crr(Surv(time_90days,status_90days) ~ age_admission, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
age_admission | 374 | 1.00 | 0.99, 1.01 | 0.8 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ sex, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
sex | 374 | |||
1 | — | — | ||
2 | 0.91 | 0.70, 1.18 | 0.5 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ White, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
White | 374 | |||
0 | — | — | ||
1 | 1.08 | 0.80, 1.46 | 0.6 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hispanic_race, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hispanic_race | 374 | |||
0 | — | — | ||
1 | 0.69 | 0.44, 1.08 | 0.10 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hrs | 374 | |||
Non-HRS | — | — | ||
HRS | 0.72 | 0.50, 1.04 | 0.077 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ study_site, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 36 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
study_site | 338 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.03 | 0.78, 1.37 | 0.8 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ MELD_Na_baseline, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 3 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
MELD_Na_baseline | 371 | 1.02 | 1.01, 1.04 | 0.004 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ pressor, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
pressor | 372 | |||
0 | — | — | ||
1 | 1.94 | 1.42, 2.65 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ initial_rrt, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
initial_rrt | 372 | |||
1 | — | — | ||
2 | 2.58 | 1.86, 3.57 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ liver_transplant_listed, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
liver_transplant_listed | 374 | |||
0 | — | — | ||
1 | 0.23 | 0.15, 0.34 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
m_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs+age_admission+sex+White+hispanic_race+study_site+pressor+initial_rrt+MELD_Na_baseline+liver_transplant_listed,data=master_rrt)
## 42 cases omitted due to missing values
m_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Model 1 cmprsk regression**")%>%
add_n()
Characteristic | N | Model 1 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 332 | |||
Non-HRS | — | — | ||
HRS | 1.36 | 0.95, 1.94 | 0.089 | |
age_admission | 332 | 1.01 | 1.00, 1.02 | 0.150 |
sex | 332 | |||
1 | — | — | ||
2 | 0.94 | 0.71, 1.25 | 0.670 | |
White | 332 | |||
0 | — | — | ||
1 | 1.41 | 1.01, 1.96 | 0.042 | |
hispanic_race | 332 | |||
0 | — | — | ||
1 | 0.69 | 0.44, 1.06 | 0.092 | |
study_site | 332 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.24 | 0.91, 1.69 | 0.170 | |
pressor | 332 | |||
0 | — | — | ||
1 | 1.62 | 1.15, 2.28 | 0.006 | |
initial_rrt | 332 | |||
1 | — | — | ||
2 | 2.65 | 1.87, 3.77 | <0.001 | |
MELD_Na_baseline | 332 | 1.04 | 1.02, 1.05 | <0.001 |
liver_transplant_listed | 332 | |||
0 | — | — | ||
1 | 0.19 | 0.12, 0.31 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ age_admission, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
age_admission | 374 | 1.00 | 0.99, 1.01 | 0.8 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ sex, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
sex | 374 | |||
1 | — | — | ||
2 | 0.91 | 0.70, 1.18 | 0.5 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ White, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
White | 374 | |||
0 | — | — | ||
1 | 1.08 | 0.80, 1.46 | 0.6 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hispanic_race, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hispanic_race | 374 | |||
0 | — | — | ||
1 | 0.69 | 0.44, 1.08 | 0.10 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hrs | 374 | |||
Non-HRS | — | — | ||
HRS | 0.72 | 0.50, 1.04 | 0.077 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ study_site, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 36 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
study_site | 338 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.03 | 0.78, 1.37 | 0.8 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ MELD_Na_baseline, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 3 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
MELD_Na_baseline | 371 | 1.02 | 1.01, 1.04 | 0.004 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ pressor, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
pressor | 372 | |||
0 | — | — | ||
1 | 1.94 | 1.42, 2.65 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ initial_rrt, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
initial_rrt | 372 | |||
1 | — | — | ||
2 | 2.58 | 1.86, 3.57 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ liver_transplant_listed, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
liver_transplant_listed | 374 | |||
0 | — | — | ||
1 | 0.23 | 0.15, 0.34 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs*study_site, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 36 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hrs | 338 | |||
Non-HRS | — | — | ||
HRS | 0.78 | 0.46, 1.31 | 0.4 | |
study_site | 338 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.05 | 0.76, 1.45 | 0.8 | |
hrs * study_site | 338 | |||
HRS * Low_volume_RRT | 1.07 | 0.51, 2.28 | 0.9 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
m2_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs+age_admission+sex+White+hispanic_race+study_site+pressor+initial_rrt+MELD_Na_baseline+liver_transplant_listed+hrs*study_site,data=master_rrt)
## 42 cases omitted due to missing values
m2_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Model 2 cmprsk regression**")%>%
add_n()
Characteristic | N | Model 2 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 332 | |||
Non-HRS | — | — | ||
HRS | 1.35 | 0.78, 2.32 | 0.280 | |
age_admission | 332 | 1.01 | 1.00, 1.02 | 0.150 |
sex | 332 | |||
1 | — | — | ||
2 | 0.94 | 0.71, 1.25 | 0.670 | |
White | 332 | |||
0 | — | — | ||
1 | 1.41 | 1.01, 1.96 | 0.042 | |
hispanic_race | 332 | |||
0 | — | — | ||
1 | 0.69 | 0.44, 1.06 | 0.092 | |
study_site | 332 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.24 | 0.88, 1.75 | 0.220 | |
pressor | 332 | |||
0 | — | — | ||
1 | 1.62 | 1.15, 2.28 | 0.006 | |
initial_rrt | 332 | |||
1 | — | — | ||
2 | 2.65 | 1.87, 3.77 | <0.001 | |
MELD_Na_baseline | 332 | 1.04 | 1.02, 1.05 | <0.001 |
liver_transplant_listed | 332 | |||
0 | — | — | ||
1 | 0.19 | 0.12, 0.31 | <0.001 | |
hrs * study_site | 332 | |||
HRS * Low_volume_RRT | 1.02 | 0.51, 2.05 | 0.960 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ encephalopathy_admission, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 1 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
encephalopathy_admission | 373 | |||
0 | — | — | ||
1 | 1.34 | 1.00, 1.80 | 0.054 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ MELD_Na_baseline, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 3 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
MELD_Na_baseline | 371 | 1.02 | 1.01, 1.04 | 0.004 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ pressor, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
pressor | 372 | |||
0 | — | — | ||
1 | 1.94 | 1.42, 2.65 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ initial_rrt, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
initial_rrt | 372 | |||
1 | — | — | ||
2 | 2.58 | 1.86, 3.57 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
m3_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs+study_site+encephalopathy_admission+pressor+initial_rrt+MELD_Na_baseline,data=master_rrt)
## 43 cases omitted due to missing values
m3_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Model 3 cmprsk regression**")%>%
add_n()
Characteristic | N | Model 3 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 331 | |||
Non-HRS | — | — | ||
HRS | 0.82 | 0.54, 1.24 | 0.350 | |
study_site | 331 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.04 | 0.77, 1.40 | 0.820 | |
encephalopathy_admission | 331 | |||
0 | — | — | ||
1 | 1.28 | 0.93, 1.78 | 0.130 | |
pressor | 331 | |||
0 | — | — | ||
1 | 1.62 | 1.14, 2.29 | 0.007 | |
initial_rrt | 331 | |||
1 | — | — | ||
2 | 1.92 | 1.36, 2.70 | <0.001 | |
MELD_Na_baseline | 331 | 1.02 | 1.01, 1.04 | 0.004 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ age_admission, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
age_admission | 374 | 1.00 | 0.99, 1.01 | 0.8 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ sex, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
sex | 374 | |||
1 | — | — | ||
2 | 0.91 | 0.70, 1.18 | 0.5 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ White, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
White | 374 | |||
0 | — | — | ||
1 | 1.08 | 0.80, 1.46 | 0.6 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hispanic_race, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hispanic_race | 374 | |||
0 | — | — | ||
1 | 0.69 | 0.44, 1.08 | 0.10 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hrs | 374 | |||
Non-HRS | — | — | ||
HRS | 0.72 | 0.50, 1.04 | 0.077 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ study_site, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 36 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
study_site | 338 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.03 | 0.78, 1.37 | 0.8 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ MELD_Na_baseline, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 3 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
MELD_Na_baseline | 371 | 1.02 | 1.01, 1.04 | 0.004 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ pressor, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
pressor | 372 | |||
0 | — | — | ||
1 | 1.94 | 1.42, 2.65 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ initial_rrt, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
initial_rrt | 372 | |||
1 | — | — | ||
2 | 2.58 | 1.86, 3.57 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ liver_transplant_listed, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
liver_transplant_listed | 374 | |||
0 | — | — | ||
1 | 0.23 | 0.15, 0.34 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs*liver_transplant_listed, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hrs | 374 | |||
Non-HRS | — | — | ||
HRS | 1.17 | 0.78, 1.74 | 0.5 | |
liver_transplant_listed | 374 | |||
0 | — | — | ||
1 | 0.25 | 0.16, 0.41 | <0.001 | |
hrs * liver_transplant_listed | 374 | |||
HRS * 1 | 0.65 | 0.25, 1.66 | 0.4 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
m3_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs+age_admission+sex+White+hispanic_race+study_site+pressor+initial_rrt+MELD_Na_baseline+liver_transplant_listed+ hrs*liver_transplant_listed,data=master_rrt)
## 42 cases omitted due to missing values
m3_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Model 4 cmprsk regression**")%>%
add_n()
Characteristic | N | Model 4 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 332 | |||
Non-HRS | — | — | ||
HRS | 1.45 | 0.99, 2.12 | 0.059 | |
age_admission | 332 | 1.01 | 1.00, 1.02 | 0.150 |
sex | 332 | |||
1 | — | — | ||
2 | 0.94 | 0.71, 1.25 | 0.690 | |
White | 332 | |||
0 | — | — | ||
1 | 1.41 | 1.02, 1.96 | 0.040 | |
hispanic_race | 332 | |||
0 | — | — | ||
1 | 0.69 | 0.45, 1.07 | 0.094 | |
study_site | 332 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.23 | 0.91, 1.68 | 0.180 | |
pressor | 332 | |||
0 | — | — | ||
1 | 1.63 | 1.15, 2.29 | 0.006 | |
initial_rrt | 332 | |||
1 | — | — | ||
2 | 2.67 | 1.88, 3.79 | <0.001 | |
MELD_Na_baseline | 332 | 1.04 | 1.02, 1.05 | <0.001 |
liver_transplant_listed | 332 | |||
0 | — | — | ||
1 | 0.21 | 0.12, 0.36 | <0.001 | |
hrs * liver_transplant_listed | 332 | |||
HRS * 1 | 0.76 | 0.29, 2.00 | 0.580 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ age_admission, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
age_admission | 374 | 1.00 | 0.99, 1.01 | 0.8 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ sex, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
sex | 374 | |||
1 | — | — | ||
2 | 0.91 | 0.70, 1.18 | 0.5 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ White, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
White | 374 | |||
0 | — | — | ||
1 | 1.08 | 0.80, 1.46 | 0.6 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hispanic_race, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hispanic_race | 374 | |||
0 | — | — | ||
1 | 0.69 | 0.44, 1.08 | 0.10 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs_atn_group, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 75 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
hrs_atn_group | 299 | |||
ATN | — | — | ||
HRS | 0.64 | 0.44, 0.93 | 0.020 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ study_site, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 36 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
study_site | 338 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.03 | 0.78, 1.37 | 0.8 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ MELD_Na_baseline, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 3 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
MELD_Na_baseline | 371 | 1.02 | 1.01, 1.04 | 0.004 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ pressor, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
pressor | 372 | |||
0 | — | — | ||
1 | 1.94 | 1.42, 2.65 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ initial_rrt, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
## 2 cases omitted due to missing values
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
initial_rrt | 372 | |||
1 | — | — | ||
2 | 2.58 | 1.86, 3.57 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ liver_transplant_listed, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
liver_transplant_listed | 374 | |||
0 | — | — | ||
1 | 0.23 | 0.15, 0.34 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::crr(Surv(time_90days,status_90days) ~ CLIF_C_Score, data = master_rrt) %>%
tbl_regression(exp = TRUE) %>% add_n()
Characteristic | N | HR1 | 95% CI1 | p-value |
---|---|---|---|---|
CLIF_C_Score | 374 | 1.04 | 1.03, 1.05 | <0.001 |
1 HR = Hazard Ratio, CI = Confidence Interval |
s1_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs_atn_group+age_admission+sex+White+hispanic_race+study_site+pressor+initial_rrt+MELD_Na_baseline+liver_transplant_listed,data=master_rrt)
## 114 cases omitted due to missing values
s1_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity 1 cmprsk regression**")%>%
add_n()
Characteristic | N | Sensitivity 1 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs_atn_group | 260 | |||
ATN | — | — | ||
HRS | 1.14 | 0.77, 1.69 | 0.510 | |
age_admission | 260 | 1.00 | 0.99, 1.02 | 0.450 |
sex | 260 | |||
1 | — | — | ||
2 | 0.91 | 0.66, 1.25 | 0.550 | |
White | 260 | |||
0 | — | — | ||
1 | 1.19 | 0.83, 1.70 | 0.330 | |
hispanic_race | 260 | |||
0 | — | — | ||
1 | 0.74 | 0.46, 1.21 | 0.230 | |
study_site | 260 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.39 | 1.00, 1.94 | 0.050 | |
pressor | 260 | |||
0 | — | — | ||
1 | 1.26 | 0.86, 1.83 | 0.230 | |
initial_rrt | 260 | |||
1 | — | — | ||
2 | 2.57 | 1.74, 3.80 | <0.001 | |
MELD_Na_baseline | 260 | 1.04 | 1.02, 1.06 | <0.001 |
liver_transplant_listed | 260 | |||
0 | — | — | ||
1 | 0.21 | 0.12, 0.36 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
s2_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs+sex+White+hispanic_race+study_site+initial_rrt+CLIF_C_Score +liver_transplant_listed,data=master_rrt)
## 37 cases omitted due to missing values
s2_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity 2 cmprsk regression**")%>%
add_n()
Characteristic | N | Sensitivity 2 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 337 | |||
Non-HRS | — | — | ||
HRS | 1.40 | 0.99, 1.98 | 0.056 | |
sex | 337 | |||
1 | — | — | ||
2 | 0.98 | 0.75, 1.28 | 0.890 | |
White | 337 | |||
0 | — | — | ||
1 | 1.32 | 0.97, 1.81 | 0.081 | |
hispanic_race | 337 | |||
0 | — | — | ||
1 | 0.72 | 0.46, 1.11 | 0.140 | |
study_site | 337 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.26 | 0.93, 1.71 | 0.130 | |
initial_rrt | 337 | |||
1 | — | — | ||
2 | 3.11 | 2.21, 4.37 | <0.001 | |
CLIF_C_Score | 337 | 1.03 | 1.02, 1.05 | <0.001 |
liver_transplant_listed | 337 | |||
0 | — | — | ||
1 | 0.21 | 0.14, 0.34 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
s2_cmprsk_model <- tidycmprsk::crr(Surv(time=time_90days,status_90days) ~ hrs+study_site+initial_rrt+CLIF_C_Score,data=master_rrt)
## 37 cases omitted due to missing values
s2_cmprsk_model %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity 3 cmprsk regression**")%>%
add_n()
Characteristic | N | Sensitivity 3 cmprsk regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 337 | |||
Non-HRS | — | — | ||
HRS | 0.92 | 0.63, 1.34 | 0.650 | |
study_site | 337 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.02 | 0.76, 1.37 | 0.900 | |
initial_rrt | 337 | |||
1 | — | — | ||
2 | 2.38 | 1.72, 3.31 | <0.001 | |
CLIF_C_Score | 337 | 1.04 | 1.02, 1.05 | <0.001 |
1 HR = Hazard Ratio, CI = Confidence Interval |