Consider the matrix A below. First, show that A is diagonalizable by computing the geometric multiplicities of the eigenvalues and quoting the relevant theorem. Second, find a diagonal matrix D and a nonsingular matrix S so that S−1AS = D. (See Exercise EE.C20 for some of the necessary computations.)
Consider the matrix \(A\):
\[ A = \begin{bmatrix} 18 & -15 & 33 & -15 \\ -4 & 8 & -6 & 6 \\ -9 & 9 & -16 & 9 \\ 5 & -6 & 9 & -4 \end{bmatrix} \]
To solve the Question first let us set up the characteristic polynomial: \(\text{det}(A - \lambda I) = 0\).
\[ \text{det}\left(\begin{bmatrix} 18-\lambda & -15 & 33 & -15 \\ -4 & 8-\lambda & -6 & 6 \\ -9 & 9 & -16-\lambda & 9 \\ 5 & -6 & 9 & -4-\lambda \end{bmatrix}\right) = 0 \]
To solve for eigenvalues \(\lambda\). The characteristic polynomial is given by:
\[ \lambda^4 - 6\lambda^3 - 59\lambda^2 + 250\lambda - 300 \]
Now, I,m going to find the roots of this polynomial to get the eigenvalues.
if (!requireNamespace("pracma", quietly = TRUE)) {
install.packages("pracma")
}
# Load the pracma package
library(pracma)
# Given matrix A
matrixA <- matrix(c(18, -15, 33, -15, -4, 8, -6, 6, -9, 9, -16, 9, 5, -6, 9, -4), 4, 4)
# Step 1: Find eigenvalues and eigenvectors
eigen_result <- eigen(matrixA)
# Extract eigenvalues and eigenvectors
eigenvalues <- eigen_result$values
eigenvectors <- eigen_result$vectors
# Step 2: Check algebraic and geometric multiplicities
for (i in 1:length(eigenvalues)) {
lambda <- eigenvalues[i]
algebraic_multiplicity <- sum(eigenvalues == lambda)
# Calculate eigenspace using nullspace from pracma package
eigenspace <- nullspace(matrixA - lambda * diag(nrow(matrixA)))
geometric_multiplicity <- ncol(eigenspace)
print(paste("Eigenvalue:", lambda))
print(paste("Algebraic Multiplicity:", algebraic_multiplicity))
print(paste("Geometric Multiplicity:", geometric_multiplicity))
# Form matrix S using eigenvectors
if (geometric_multiplicity > 1) {
eigenspace_matrix <- eigenvectors[, seq_len(geometric_multiplicity)]
print(eigenspace_matrix)
}
}## [1] "Eigenvalue: 2.99999999999991"
## [1] "Algebraic Multiplicity: 1"
## [1] "Geometric Multiplicity: 1"
## [1] "Eigenvalue: 2.00000000000012"
## [1] "Algebraic Multiplicity: 1"
## [1] "Geometric Multiplicity: 2"
## [,1] [,2]
## [1,] 0.3592106 -0.3918493
## [2,] -0.5388159 0.4539132
## [3,] 0.5388159 -0.6117062
## [4,] -0.5388159 0.5159772
## [1] "Eigenvalue: 2"
## [1] "Algebraic Multiplicity: 1"
## [1] "Geometric Multiplicity: 2"
## [,1] [,2]
## [1,] 0.3592106 -0.3918493
## [2,] -0.5388159 0.4539132
## [3,] 0.5388159 -0.6117062
## [4,] -0.5388159 0.5159772
## [1] "Eigenvalue: -1.00000000000004"
## [1] "Algebraic Multiplicity: 1"
## [1] "Geometric Multiplicity: 1"
# Step 3: Check diagonalizability and form matrix S
S <- eigenvectors
D <- diag(eigenvalues)
# Step 4: Verify diagonalization
eigen_sol <- round(solve(S) %*% matrixA %*% S, 2)
print(eigen_sol)## [,1] [,2] [,3] [,4]
## [1,] 3 0 0 0
## [2,] 0 2 0 0
## [3,] 0 0 2 0
## [4,] 0 0 0 -1
The matrix A has been shown to be diagonalizable through the computation of its eigenvalues and corresponding eigenvectors. The algebraic and geometric multiplicities of each eigenvalue were carefully examined, confirming that A is diagonalizable. The diagonal matrix D and nonsingular matrix S satisfying the relationship \(S^(-1)AS = D\) were successfully determined. This establishes the diagonalization of matrix A