knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(fpp3)
## Warning: package 'fpp3' was built under R version 4.3.2
## ── Attaching packages ────────────────────────────────────────────── fpp3 0.5 ──
## ✔ tsibble     1.1.4     ✔ fable       0.3.3
## ✔ tsibbledata 0.4.1     ✔ fabletools  0.3.4
## ✔ feasts      0.3.1
## Warning: package 'tsibble' was built under R version 4.3.2
## Warning: package 'tsibbledata' was built under R version 4.3.2
## Warning: package 'feasts' was built under R version 4.3.2
## Warning: package 'fabletools' was built under R version 4.3.2
## Warning: package 'fable' was built under R version 4.3.2
## ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
## ✖ lubridate::date()    masks base::date()
## ✖ dplyr::filter()      masks stats::filter()
## ✖ tsibble::intersect() masks base::intersect()
## ✖ tsibble::interval()  masks lubridate::interval()
## ✖ dplyr::lag()         masks stats::lag()
## ✖ tsibble::setdiff()   masks base::setdiff()
## ✖ tsibble::union()     masks base::union()
library(tsibble)
library(tsibbledata)

2.1

gafa_stock

help("gafa_stock")
## starting httpd help server ... done
gafa_stock
## # A tsibble: 5,032 x 8 [!]
## # Key:       Symbol [4]
##    Symbol Date        Open  High   Low Close Adj_Close    Volume
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>     <dbl>
##  1 AAPL   2014-01-02  79.4  79.6  78.9  79.0      67.0  58671200
##  2 AAPL   2014-01-03  79.0  79.1  77.2  77.3      65.5  98116900
##  3 AAPL   2014-01-06  76.8  78.1  76.2  77.7      65.9 103152700
##  4 AAPL   2014-01-07  77.8  78.0  76.8  77.1      65.4  79302300
##  5 AAPL   2014-01-08  77.0  77.9  77.0  77.6      65.8  64632400
##  6 AAPL   2014-01-09  78.1  78.1  76.5  76.6      65.0  69787200
##  7 AAPL   2014-01-10  77.1  77.3  75.9  76.1      64.5  76244000
##  8 AAPL   2014-01-13  75.7  77.5  75.7  76.5      64.9  94623200
##  9 AAPL   2014-01-14  76.9  78.1  76.8  78.1      66.1  83140400
## 10 AAPL   2014-01-15  79.1  80.0  78.8  79.6      67.5  97909700
## # ℹ 5,022 more rows

Time interval of gafa_stock series

Daily tsibble from 2014-01-02 till 2017-12-19.

autoplot(gafa_stock, Open) +
  ggtitle("Opening GAFA Stock Prices from 2014-2018")

autoplot(gafa_stock, Close) +
  ggtitle("Closing GAFA Stock Prices from 2014-2018")

PBS

help("PBS")
PBS
## # A tsibble: 67,596 x 9 [1M]
## # Key:       Concession, Type, ATC1, ATC2 [336]
##       Month Concession   Type      ATC1  ATC1_desc ATC2  ATC2_desc Scripts  Cost
##       <mth> <chr>        <chr>     <chr> <chr>     <chr> <chr>       <dbl> <dbl>
##  1 1991 Jul Concessional Co-payme… A     Alimenta… A01   STOMATOL…   18228 67877
##  2 1991 Aug Concessional Co-payme… A     Alimenta… A01   STOMATOL…   15327 57011
##  3 1991 Sep Concessional Co-payme… A     Alimenta… A01   STOMATOL…   14775 55020
##  4 1991 Oct Concessional Co-payme… A     Alimenta… A01   STOMATOL…   15380 57222
##  5 1991 Nov Concessional Co-payme… A     Alimenta… A01   STOMATOL…   14371 52120
##  6 1991 Dec Concessional Co-payme… A     Alimenta… A01   STOMATOL…   15028 54299
##  7 1992 Jan Concessional Co-payme… A     Alimenta… A01   STOMATOL…   11040 39753
##  8 1992 Feb Concessional Co-payme… A     Alimenta… A01   STOMATOL…   15165 54405
##  9 1992 Mar Concessional Co-payme… A     Alimenta… A01   STOMATOL…   16898 61108
## 10 1992 Apr Concessional Co-payme… A     Alimenta… A01   STOMATOL…   18141 65356
## # ℹ 67,586 more rows

Time interval of PBS series

Monthly tsibble from 1991 Jul till 1998 Oct. ### Autoplot-PBS

PBS %>% autoplot(Scripts)

### “vic_elec”

help("vic_elec")
vic_elec
## # A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
##    Time                Demand Temperature Date       Holiday
##    <dttm>               <dbl>       <dbl> <date>     <lgl>  
##  1 2012-01-01 00:00:00  4383.        21.4 2012-01-01 TRUE   
##  2 2012-01-01 00:30:00  4263.        21.0 2012-01-01 TRUE   
##  3 2012-01-01 01:00:00  4049.        20.7 2012-01-01 TRUE   
##  4 2012-01-01 01:30:00  3878.        20.6 2012-01-01 TRUE   
##  5 2012-01-01 02:00:00  4036.        20.4 2012-01-01 TRUE   
##  6 2012-01-01 02:30:00  3866.        20.2 2012-01-01 TRUE   
##  7 2012-01-01 03:00:00  3694.        20.1 2012-01-01 TRUE   
##  8 2012-01-01 03:30:00  3562.        19.6 2012-01-01 TRUE   
##  9 2012-01-01 04:00:00  3433.        19.1 2012-01-01 TRUE   
## 10 2012-01-01 04:30:00  3359.        19.0 2012-01-01 TRUE   
## # ℹ 52,598 more rows

Time interval of vic_elec series

Every 30 minutes(Half-hourly) tsibble from 2012-01-01 00:00:00 till 2012-01-21 19:30:00

Autoplot-vic_elec

autoplot(vic_elec, Demand) +
  ggtitle("Electricity Demand for Victoria, Australia")

“pelt”

help("pelt")
pelt
## # A tsibble: 91 x 3 [1Y]
##     Year  Hare  Lynx
##    <dbl> <dbl> <dbl>
##  1  1845 19580 30090
##  2  1846 19600 45150
##  3  1847 19610 49150
##  4  1848 11990 39520
##  5  1849 28040 21230
##  6  1850 58000  8420
##  7  1851 74600  5560
##  8  1852 75090  5080
##  9  1853 88480 10170
## 10  1854 61280 19600
## # ℹ 81 more rows

Time interval of pelt series

pelt is an annual tsibble from 1845 to 1935. ### Autoplot Pelts

autoplot(pelt, Lynx) +
  ggtitle("Lync Pelts traded 1845-1935")

### For the last plot, modify the axis labels and title

library(ggplot2)
autoplot(pelt,color="blue") + labs(title = "Lync Pelts traded from 1845 to 1935")+ ylab("LYNX Pelts")
## Plot variable not specified, automatically selected `.vars = Hare`

2.2

Use filter() to find what days corresponded to the peak closing price for each of the four stocks in gafa_stock

library(dplyr)
data(gafa_stock)
gafa_stock %>%
  group_by(Symbol) %>%
  filter(Close == max(Close)) %>% #Keeps rows where Close value = max close value
  select(Symbol, Date, Close)
## # A tsibble: 4 x 3 [!]
## # Key:       Symbol [4]
## # Groups:    Symbol [4]
##   Symbol Date       Close
##   <chr>  <date>     <dbl>
## 1 AAPL   2018-10-03  232.
## 2 AMZN   2018-09-04 2040.
## 3 FB     2018-07-25  218.
## 4 GOOG   2018-07-26 1268.

2.3

Download the file tute1.csv from the book website, open it in Excel (or some other spreadsheet application), and review its contents. You should find four columns of information. Columns B through D each contain a quarterly series, labelled Sales, AdBudget and GDP. Sales contains the quarterly sales for a small company over the period 1981-2005. AdBudget is the advertising budget and GDP is the gross domestic product. All series have been adjusted for inflation. ### a. You can read the data into R with the following script:

tute1 <- readr::read_csv("https://bit.ly/fpptute1")
## Rows: 100 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl  (3): Sales, AdBudget, GDP
## date (1): Quarter
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
tute1
## # A tibble: 100 × 4
##    Quarter    Sales AdBudget   GDP
##    <date>     <dbl>    <dbl> <dbl>
##  1 1981-03-01 1020.     659.  252.
##  2 1981-06-01  889.     589   291.
##  3 1981-09-01  795      512.  291.
##  4 1981-12-01 1004.     614.  292.
##  5 1982-03-01 1058.     647.  279.
##  6 1982-06-01  944.     602   254 
##  7 1982-09-01  778.     531.  296.
##  8 1982-12-01  932.     608.  272.
##  9 1983-03-01  996.     638.  260.
## 10 1983-06-01  908.     582.  280.
## # ℹ 90 more rows
View(tute1)

b.Convert the data to time series

mytimeseries <- tute1 |>
  mutate(Quarter = yearquarter(Quarter)) |>
  as_tsibble(index = Quarter)
mytimeseries
## # A tsibble: 100 x 4 [1Q]
##    Quarter Sales AdBudget   GDP
##      <qtr> <dbl>    <dbl> <dbl>
##  1 1981 Q1 1020.     659.  252.
##  2 1981 Q2  889.     589   291.
##  3 1981 Q3  795      512.  291.
##  4 1981 Q4 1004.     614.  292.
##  5 1982 Q1 1058.     647.  279.
##  6 1982 Q2  944.     602   254 
##  7 1982 Q3  778.     531.  296.
##  8 1982 Q4  932.     608.  272.
##  9 1983 Q1  996.     638.  260.
## 10 1983 Q2  908.     582.  280.
## # ℹ 90 more rows

C. Construct time series plots of each of the three series

mytimeseries |>
  pivot_longer(-Quarter) |>
  ggplot(aes(x = Quarter, y = value, colour = name)) +
  geom_line() +
  facet_grid(name ~ ., scales = "free_y")

mytimeseries
## # A tsibble: 100 x 4 [1Q]
##    Quarter Sales AdBudget   GDP
##      <qtr> <dbl>    <dbl> <dbl>
##  1 1981 Q1 1020.     659.  252.
##  2 1981 Q2  889.     589   291.
##  3 1981 Q3  795      512.  291.
##  4 1981 Q4 1004.     614.  292.
##  5 1982 Q1 1058.     647.  279.
##  6 1982 Q2  944.     602   254 
##  7 1982 Q3  778.     531.  296.
##  8 1982 Q4  932.     608.  272.
##  9 1983 Q1  996.     638.  260.
## 10 1983 Q2  908.     582.  280.
## # ℹ 90 more rows

d.Check what happens when you don’t include facet_grid().

facet_grid() forms a matrix of panels defined by row and column faceting variables. It is most useful when you have two discrete variables, and all combinations of the variables exist in the data. Without facets no panels defined by row and column as shown below:

mytimeseries |>
  pivot_longer(-Quarter) |>
  ggplot(aes(x = Quarter, y = value, colour = name)) +
  geom_line()

mytimeseries
## # A tsibble: 100 x 4 [1Q]
##    Quarter Sales AdBudget   GDP
##      <qtr> <dbl>    <dbl> <dbl>
##  1 1981 Q1 1020.     659.  252.
##  2 1981 Q2  889.     589   291.
##  3 1981 Q3  795      512.  291.
##  4 1981 Q4 1004.     614.  292.
##  5 1982 Q1 1058.     647.  279.
##  6 1982 Q2  944.     602   254 
##  7 1982 Q3  778.     531.  296.
##  8 1982 Q4  932.     608.  272.
##  9 1983 Q1  996.     638.  260.
## 10 1983 Q2  908.     582.  280.
## # ℹ 90 more rows

2.4 The USgas package contains data on the demand for natural gas in the US.

a.Install the USgas package.

library(USgas)
## Warning: package 'USgas' was built under R version 4.3.2

b.Create a tsibble from us_total with year as the index and state as the key.

gas <- us_total %>% as_tsibble(key = state, index = year)
gas
## # A tsibble: 1,266 x 3 [1Y]
## # Key:       state [53]
##     year state        y
##    <int> <chr>    <int>
##  1  1997 Alabama 324158
##  2  1998 Alabama 329134
##  3  1999 Alabama 337270
##  4  2000 Alabama 353614
##  5  2001 Alabama 332693
##  6  2002 Alabama 379343
##  7  2003 Alabama 350345
##  8  2004 Alabama 382367
##  9  2005 Alabama 353156
## 10  2006 Alabama 391093
## # ℹ 1,256 more rows

c.Plot the annual natural gas consumption by state for the New England area (comprising the states of Maine, Vermont, New Hampshire, Massachusetts, Connecticut and Rhode Island).

new_england<- gas %>% 
              group_by(state) %>% 
              filter(state %in% c('Maine', 'Vermont', 'New 
                                  Hampshire', 'Massachusetts', 
                                  'Connecticut' ,'Rhode Island')) %>%
              ungroup()
new_england %>% autoplot(y)

2.5

a.Download tourism.xlsx from the book website and read it into R using readxl::read_excel().

tourism <- readxl::read_excel('c:/Rdata/tourism.xlsx')

b.Create a tsibble from us_total with year as the index and state as the key.

tsibble_tourism <- tourism %>% mutate(Quarter = yearquarter(Quarter) ) %>%
 as_tsibble(index = Quarter, key = c(Region, State, Purpose))
tsibble_tourism
## # A tsibble: 24,320 x 5 [1Q]
## # Key:       Region, State, Purpose [304]
##    Quarter Region   State           Purpose  Trips
##      <qtr> <chr>    <chr>           <chr>    <dbl>
##  1 1998 Q1 Adelaide South Australia Business  135.
##  2 1998 Q2 Adelaide South Australia Business  110.
##  3 1998 Q3 Adelaide South Australia Business  166.
##  4 1998 Q4 Adelaide South Australia Business  127.
##  5 1999 Q1 Adelaide South Australia Business  137.
##  6 1999 Q2 Adelaide South Australia Business  200.
##  7 1999 Q3 Adelaide South Australia Business  169.
##  8 1999 Q4 Adelaide South Australia Business  134.
##  9 2000 Q1 Adelaide South Australia Business  154.
## 10 2000 Q2 Adelaide South Australia Business  169.
## # ℹ 24,310 more rows

C.Find what combination of Region and Purpose had the maximum number of overnight trips on average.

tsibble_tourism %>% group_by(Region, Purpose) %>%
 summarise(Trips = mean(Trips)) %>%
 ungroup() %>%
 filter(Trips == max(Trips))
## # A tsibble: 1 x 4 [1Q]
## # Key:       Region, Purpose [1]
##   Region    Purpose  Quarter Trips
##   <chr>     <chr>      <qtr> <dbl>
## 1 Melbourne Visiting 2017 Q4  985.

D. Create a new tsibble which combines the Purposes and Regions, and just has total trips by State

new_tsibble <- tsibble_tourism %>%
 group_by(State) %>% summarise(Trips = sum(Trips))%>%
 ungroup()
new_tsibble
## # A tsibble: 640 x 3 [1Q]
## # Key:       State [8]
##    State Quarter Trips
##    <chr>   <qtr> <dbl>
##  1 ACT   1998 Q1  551.
##  2 ACT   1998 Q2  416.
##  3 ACT   1998 Q3  436.
##  4 ACT   1998 Q4  450.
##  5 ACT   1999 Q1  379.
##  6 ACT   1999 Q2  558.
##  7 ACT   1999 Q3  449.
##  8 ACT   1999 Q4  595.
##  9 ACT   2000 Q1  600.
## 10 ACT   2000 Q2  557.
## # ℹ 630 more rows

2.8

Use the following graphics functions: autoplot(), gg_season(), gg_subseries(), gg_lag(), ACF() and explore features from the following time series: “Total Private” Employed from us_employment, Bricks from aus_production, Hare from pelt, “H02” Cost from PBS, and Barrels from us_gasoline. ### us_employment

us_emp <- us_employment %>% 
        filter(Title == "Total Private")
us_emp %>% autoplot(Employed)

us_emp %>% gg_season(Employed)

us_emp %>% gg_subseries(Employed)

us_emp %>% gg_lag(Employed)

us_emp %>% ACF(Employed)
## # A tsibble: 29 x 3 [1M]
## # Key:       Series_ID [1]
##    Series_ID          lag   acf
##    <chr>         <cf_lag> <dbl>
##  1 CEU0500000001       1M 0.997
##  2 CEU0500000001       2M 0.993
##  3 CEU0500000001       3M 0.990
##  4 CEU0500000001       4M 0.986
##  5 CEU0500000001       5M 0.983
##  6 CEU0500000001       6M 0.980
##  7 CEU0500000001       7M 0.977
##  8 CEU0500000001       8M 0.974
##  9 CEU0500000001       9M 0.971
## 10 CEU0500000001      10M 0.968
## # ℹ 19 more rows

Bricks

aus_production %>% autoplot(Bricks)
## Warning: Removed 20 rows containing missing values (`geom_line()`).

aus_production %>% gg_season(Bricks)
## Warning: Removed 20 rows containing missing values (`geom_line()`).

aus_production %>% gg_subseries(Bricks)
## Warning: Removed 5 rows containing missing values (`geom_line()`).

aus_production %>% gg_lag(Bricks)
## Warning: Removed 20 rows containing missing values (gg_lag).

aus_production %>% ACF(Bricks)
## # A tsibble: 22 x 2 [1Q]
##         lag   acf
##    <cf_lag> <dbl>
##  1       1Q 0.900
##  2       2Q 0.815
##  3       3Q 0.813
##  4       4Q 0.828
##  5       5Q 0.720
##  6       6Q 0.642
##  7       7Q 0.655
##  8       8Q 0.692
##  9       9Q 0.609
## 10      10Q 0.556
## # ℹ 12 more rows

Hare from pelt

pelt %>% autoplot(Hare)

pelt %>% gg_subseries(Hare)

pelt %>% gg_lag(Hare)

pelt %>% ACF(Hare)
## # A tsibble: 19 x 2 [1Y]
##         lag     acf
##    <cf_lag>   <dbl>
##  1       1Y  0.658 
##  2       2Y  0.214 
##  3       3Y -0.155 
##  4       4Y -0.401 
##  5       5Y -0.493 
##  6       6Y -0.401 
##  7       7Y -0.168 
##  8       8Y  0.113 
##  9       9Y  0.307 
## 10      10Y  0.340 
## 11      11Y  0.296 
## 12      12Y  0.206 
## 13      13Y  0.0372
## 14      14Y -0.153 
## 15      15Y -0.285 
## 16      16Y -0.295 
## 17      17Y -0.202 
## 18      18Y -0.0676
## 19      19Y  0.0956

“H02” Cost from PBS

H02 <- PBS %>% filter(ATC2 == "H02") 
H02 %>% autoplot(Cost)

H02 %>% gg_season(Cost)

H02 %>% gg_subseries(Cost)

H02 %>% ACF(Cost)
## # A tsibble: 92 x 6 [1M]
## # Key:       Concession, Type, ATC1, ATC2 [4]
##    Concession   Type        ATC1  ATC2       lag   acf
##    <chr>        <chr>       <chr> <chr> <cf_lag> <dbl>
##  1 Concessional Co-payments H     H02         1M 0.834
##  2 Concessional Co-payments H     H02         2M 0.679
##  3 Concessional Co-payments H     H02         3M 0.514
##  4 Concessional Co-payments H     H02         4M 0.352
##  5 Concessional Co-payments H     H02         5M 0.264
##  6 Concessional Co-payments H     H02         6M 0.219
##  7 Concessional Co-payments H     H02         7M 0.253
##  8 Concessional Co-payments H     H02         8M 0.337
##  9 Concessional Co-payments H     H02         9M 0.464
## 10 Concessional Co-payments H     H02        10M 0.574
## # ℹ 82 more rows

Barrels from us_gasoline

us_gasoline%>% autoplot(Barrels)

us_gasoline%>% gg_season(Barrels)

us_gasoline%>% gg_subseries(Barrels)

us_gasoline%>% gg_lag(Barrels)

us_gasoline%>% ACF(Barrels)
## # A tsibble: 31 x 2 [1W]
##         lag   acf
##    <cf_lag> <dbl>
##  1       1W 0.893
##  2       2W 0.882
##  3       3W 0.873
##  4       4W 0.866
##  5       5W 0.847
##  6       6W 0.844
##  7       7W 0.832
##  8       8W 0.831
##  9       9W 0.822
## 10      10W 0.808
## # ℹ 21 more rows

2.8a

Can you spot any seasonality, cyclicity and trend? What do you learn about the series? What can you say about the seasonal patterns? Can you identify any unusual years?

No seasonality and cyclicity but an upward trend Its possible the barrels value is impacted by supply Unusual year: 1983 Q1 appears to be when the sharpest decline in brick production occurred.