\[\begin{equation} Prove AA^{T} \neq A^{T}A \end{equation}\]
\[\begin{equation} Let A=\begin{bmatrix} w & y \\ x & z \end{bmatrix} \end{equation}\]
\[\begin{equation} Then, A^{T}=\begin{bmatrix} w & x \\ y & z \end{bmatrix} \end{equation}\]
\[\begin{equation} AA^{T} = \begin{bmatrix} ww + yy & xw + yz \\ xw + yz & xx + xz \end{bmatrix} \end{equation}\]
\[\begin{equation} A^{T}A = \begin{bmatrix} ww + xx & wy + xz \\ wy + xz & yy + zz \end{bmatrix} \end{equation}\]
\[\begin{equation} Therefore, AA^{T} \neq A^{T}A \blacksquare \end{equation}\]
the statement
\[\begin{equation} AA^{T} = A^{T}A \end{equation}\] is true.
Decompose 3x3 matrix in to L and U.
decompose <- function(m) {
elimination_matrices=list()
if (nrow(m)==3) {
# m[2,1], m[3,1], m[3,2]
if (m[2,1] !=0) {
multiplier <- m[2,1]/m[1,1]
m[2,] <- m[2,] - m[1,] * multiplier
temp_mat <- diag(3)
temp_mat[2,1] <- -multiplier
elimination_matrices <- append(list(temp_mat),elimination_matrices)
}
if (m[3,1] !=0) {
row <- if (!is.nan(m[3,1]/m[2,1]) && !is.infinite(m[3,1]/m[2,1])) 2 else 1
multiplier <- m[3,1]/m[row,1]
m[3,] <- m[3,] - m[row,] * multiplier
temp_mat <- diag(3)
temp_mat[3,1] <- -multiplier
elimination_matrices <- append(list(temp_mat),elimination_matrices)
}
if (m[3,2] != 0) {
row <- if (!is.nan(m[3,2]/m[2,2]) && !is.infinite(m[3,2]/m[2,2])) 2 else 1
multiplier <- m[3,2]/m[row,2]
m[3,] <- m[3,] - m[row,] * multiplier
temp_mat <- diag(3)
temp_mat[3,2] <- -multiplier
elimination_matrices <- append(list(temp_mat),elimination_matrices)
}
}
return (elimination_matrices)
}
em_list <- decompose(matrix(c(1,2,3,1,1,1,2,0,1), nrow=3))
print(em_list)
## [[1]]
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 -2 1
##
## [[2]]
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] -3 0 1
##
## [[3]]
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] -2 1 0
## [3,] 0 0 1
getU <- function(x) {
u <- as.matrix(x[1])
for (i in 2:length(x)) {
print(x[i])
u <- as.matrix(x[i]) %*% u
}
return (u)
}