- The objective is to forecast GDP growth using Time Series Analysis.
- We’ll use synthetic GDP data for illustration.
- Tools: R, ggplot2, forecast, plotly.
2024-02-04
This section outlines the R packages crucial for our GDP growth forecasting analysis:
ggplot(gdp_data, aes(x = time, y = gdp)) +
geom_line(color = "hotpink1") +
ggtitle("Synthetic GDP Growth Over Time") +
xlab("Year") +
ylab("GDP")
The ARIMA model is defined by three parameters: (p, d, q).
The model can be mathematically represented as:
\[ARIMA(p, d, q): (1 - \sum_{i=1}^{p} \phi_i L^i)(1 - L)^d X_t = (1 + \sum_{i=1}^{q} \theta_i L^i) \varepsilon_t\]
Where: - \(L\) is the lag operator - \(\phi_i\) are the parameters of the autoregressive part - \(\theta_i\) are the parameters of the moving average part - \(\varepsilon_t\) is white noise.