Water Quality v Precipitation Variability

Author

Kathleen Kirsch

Scatterplots

Water quality vs. rainfall in the Democratic Republic of the Congo

Water quality vs. rainfall in Rwanda

Runoff vs. rainfall in the Democratic Republic of the Congo

Runoff vs. rainfall in Rwanda

Time Series Data

Precipitation & Runoff Time Series: Democratic Republic of the Congo

Time series for precipitation (blue) and runoff (red) in the Democratic Republic of the Congo

Precipitation & Runoff Time Series: Rwanda

Time series for precipitation (blue) and runoff (red) in Rwanda.

Water Quality Mapping Data

Mapped Water Quality: Democratic Republic of the Congo

Precipitation & Runoff Time Series: Rwanda

Note: Given tight clustering, this is zoomed in so far it does not display mapping resolution details. The water quality data is also not pulling in in gradient form (not reading as continuous?). For discussion with Denis on better mapping path.

Linear Regressions

Check correlation coefficient to assess linearity

Democratic Republic of the Congo

       cor 
-0.1416783 

Rwanda

      cor 
0.1431377 

Linear regression of water quality versus rainfall in the Democratic Republic of the Congo:


Call:
lm(formula = Colony ~ imerg_rf, data = rf_at_wq_DRC_all)

Residuals:
    Min      1Q  Median      3Q     Max 
 -940.2  -913.2  -723.0   -80.5 13059.8 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   940.23     183.62   5.121 7.57e-07 ***
imerg_rf      -20.59      10.55  -1.952   0.0524 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2197 on 186 degrees of freedom
Multiple R-squared:  0.02007,   Adjusted R-squared:  0.0148 
F-statistic:  3.81 on 1 and 186 DF,  p-value: 0.05245

Linear regression of water quality versus rainfall in Rwanda:


Call:
lm(formula = MPN ~ imerg_rf, data = rf_at_wq_Rwanda_all)

Residuals:
   Min     1Q Median     3Q    Max 
-83.53 -34.52 -29.76  57.70  65.54 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  34.4567     1.7938  19.209  < 2e-16 ***
imerg_rf      1.4186     0.3244   4.372 1.37e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 44.43 on 914 degrees of freedom
Multiple R-squared:  0.02049,   Adjusted R-squared:  0.01942 
F-statistic: 19.12 on 1 and 914 DF,  p-value: 1.37e-05

Binomial Regressions of Water Quality versus Rainfall

Negative binomial regression of water quality versus rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ imerg_rf, data = rf_at_wq_DRC_all, 
    init.theta = 0.2851242306, link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.862953   0.156535  43.843  < 2e-16 ***
imerg_rf    -0.048036   0.009004  -5.335 9.56e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2851) family taken to be 1)

    Null deviance: 273.67  on 187  degrees of freedom
Residual deviance: 253.81  on 186  degrees of freedom
AIC: 2476.3

Number of Fisher Scoring iterations: 1

              Theta:  0.2851 
          Std. Err.:  0.0237 

 2 x log-likelihood:  -2470.3450 

(With Site Fixed Effects): Negative binomial regression of water quality versus rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ imerg_rf + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2853835486, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.180e+00  6.997e-01  10.261  < 2e-16 ***
imerg_rf    -4.649e-02  9.492e-03  -4.898 9.66e-07 ***
SiteID      -1.105e-09  2.353e-09  -0.470    0.639    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2854) family taken to be 1)

    Null deviance: 273.91  on 187  degrees of freedom
Residual deviance: 253.77  on 185  degrees of freedom
AIC: 2478.1

Number of Fisher Scoring iterations: 1

              Theta:  0.2854 
          Std. Err.:  0.0238 

 2 x log-likelihood:  -2470.0830 

Binomial mixed effects model of water quality versus rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ imerg_rf + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus rainfall in Rwanda

Note: Initially got error – “Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, : invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta? Even with including AIC and theta adjustments “control = glm.control(maxit = 500), init.theta = 1.0” the model doesn’t run. Is this underdispersion due to only baselining? Should we revert to a Poisson model?

(With Site Fixed Effects): Negative binomial regression of water quality versus rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ imerg_rf + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Initially got error – “Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, : invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta? Even with including AIC and theta adjustments “control = glm.control(maxit = 500), init.theta = 1.0” the model doesn’t run.

Binomial mixed effects model of water quality versus rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ imerg_rf + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 7-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img7d, data = rf_at_wq_DRC_all, init.theta = 0.2704613534, 
    link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.940258   0.199472  34.793   <2e-16 ***
img7d       -0.006656   0.002789  -2.387    0.017 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2705) family taken to be 1)

    Null deviance: 259.81  on 187  degrees of freedom
Residual deviance: 255.90  on 186  degrees of freedom
AIC: 2491.7

Number of Fisher Scoring iterations: 1

              Theta:  0.2705 
          Std. Err.:  0.0224 

 2 x log-likelihood:  -2485.6670 

(With Site Fixed Effects): Negative binomial regression of water quality versus 7-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img7d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2719376215, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.741e+00  7.071e-01  10.948   <2e-16 ***
img7d       -6.347e-03  2.945e-03  -2.155   0.0312 *  
SiteID      -2.765e-09  2.420e-09  -1.143   0.2532    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2719) family taken to be 1)

    Null deviance: 261.21  on 187  degrees of freedom
Residual deviance: 255.68  on 185  degrees of freedom
AIC: 2492.1

Number of Fisher Scoring iterations: 1

              Theta:  0.2719 
          Std. Err.:  0.0225 

 2 x log-likelihood:  -2484.0800 

Binomial mixed effects model of water quality versus 7-day rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ img7d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 7-day rainfall in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 7-day rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ img7d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 7-day rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ img7d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 14-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img14d, data = rf_at_wq_DRC_all, init.theta = 0.2671893276, 
    link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.738707   0.209998  32.089   <2e-16 ***
img14d      -0.001098   0.001677  -0.655    0.513    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2672) family taken to be 1)

    Null deviance: 256.72  on 187  degrees of freedom
Residual deviance: 256.39  on 186  degrees of freedom
AIC: 2495.2

Number of Fisher Scoring iterations: 1

              Theta:  0.2672 
          Std. Err.:  0.0221 

 2 x log-likelihood:  -2489.2190 

(With Site Fixed Effects): Negative binomial regression of water quality versus 14-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img14d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2688414129, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.581e+00  7.079e-01  10.710   <2e-16 ***
img14d      -7.803e-04  1.757e-03  -0.444    0.657    
SiteID      -2.958e-09  2.414e-09  -1.225    0.221    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2688) family taken to be 1)

    Null deviance: 258.28  on 187  degrees of freedom
Residual deviance: 256.14  on 185  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2688 
          Std. Err.:  0.0223 

 2 x log-likelihood:  -2487.4190 

Binomial mixed effects model of water quality versus 14-day rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ img14d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 14-day rainfall in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 14-day rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ img14d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 14-day rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ img14d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img30d, data = rf_at_wq_DRC_all, init.theta = 0.2671192387, 
    link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) 6.5415653  0.2233972  29.282   <2e-16 ***
img30d      0.0005253  0.0009469   0.555    0.579    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2671) family taken to be 1)

    Null deviance: 256.66  on 187  degrees of freedom
Residual deviance: 256.40  on 186  degrees of freedom
AIC: 2495.3

Number of Fisher Scoring iterations: 1

              Theta:  0.2671 
          Std. Err.:  0.0221 

 2 x log-likelihood:  -2489.2950 

(With Site Fixed Effects): Negative binomial regression of water quality versus 30-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img30d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2688855106, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.441e+00  7.053e-01  10.550   <2e-16 ***
img30d       4.761e-04  9.719e-04   0.490    0.624    
SiteID      -3.025e-09  2.366e-09  -1.278    0.201    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2689) family taken to be 1)

    Null deviance: 258.33  on 187  degrees of freedom
Residual deviance: 256.13  on 185  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2689 
          Std. Err.:  0.0223 

 2 x log-likelihood:  -2487.3720 

Binomial mixed effects model of water quality versus 30-day rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ img30d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day rainfall in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 30-day rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ img30d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 30-day rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ img30d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Binomial Regressions of Water Quality versus Runoff

Negative binomial regression of water quality versus runoff in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ lis_runoff, data = rf_at_wq_DRC_all, 
    init.theta = 0.2794810443, link = log)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.77367    0.15203  44.554  < 2e-16 ***
lis_runoff  -0.07996    0.01933  -4.137 3.52e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2795) family taken to be 1)

    Null deviance: 268.34  on 187  degrees of freedom
Residual deviance: 254.60  on 186  degrees of freedom
AIC: 2482.1

Number of Fisher Scoring iterations: 1

              Theta:  0.2795 
          Std. Err.:  0.0232 

 2 x log-likelihood:  -2476.1330 

(With Site Fixed Effects): Negative binomial water quality versus runoff in the Democratic Republic of the Congo:

Note: Initially got error – “Error in glm.fitter() NA/NaN/Inf in ‘x’” but there are no missing values. Model not converging. Should we revert to a Poisson model, often shown as the correction?

Binomial mixed effects model of water quality versus runoff in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ lis_runoff + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus runoff in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus runoff in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ lis_runoff + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus runoff in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ lis_runoff + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day runoff in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ lis30d, data = rf_at_wq_DRC_all, init.theta = 0.2670300772, 
    link = log)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) 6.574489   0.200938  32.719   <2e-16 ***
lis30d      0.001066   0.002377   0.448    0.654    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.267) family taken to be 1)

    Null deviance: 256.57  on 187  degrees of freedom
Residual deviance: 256.41  on 186  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2670 
          Std. Err.:  0.0221 

 2 x log-likelihood:  -2489.3930 

(With Site Fixed Effects): Negative binomial water quality versus 30-day runoff in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ lis30d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.268849347, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.476e+00  7.053e-01  10.599   <2e-16 ***
lis30d       1.112e-03  2.423e-03   0.459    0.646    
SiteID      -3.072e-09  2.351e-09  -1.307    0.191    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2688) family taken to be 1)

    Null deviance: 258.29  on 187  degrees of freedom
Residual deviance: 256.14  on 185  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2688 
          Std. Err.:  0.0223 

 2 x log-likelihood:  -2487.4110 

Binomial mixed effects model of water quality versus 30-day runoff in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ lis30d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day runoff in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 30-day runoff in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ lis30d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 30-day runoff in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ lis30d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”


Create Categorical Variables: WHO Risks for the Democratic Republic of the Congo:

#rf_at_wq_DRC_all$Categories <- cut(rf_at_wq_DRC_all$Colony,
              #breaks=c(0, 1, 10, 100, 100000),
              #labels=c('Low_Risk', 'Intermediate Risk', 'High_Risk', 'Very_High_Risk'))

rf_at_wq_DRC_all <- within(rf_at_wq_DRC_all, {   
  Colony.cat <- NA # need to initialize variable
  Colony.cat[Colony < 1] <- "Low_Risk"
  Colony.cat[Colony >= 1 & Colony < 11 ] <- "Intermediate_Risk"
  Colony.cat[Colony >= 11 & Colony < 100] <- "High_Risk"  
  Colony.cat[Colony >= 100] <- "a_Very_High_Risk"
   } )
  
table1 <- 
  rf_at_wq_DRC_all %>%
  tbl_summary(include = c(Colony, Colony.cat)) %>%
  modify_header(label = "**WHO Risk Categories for Samples from the DRC**")

table1
WHO Risk Categories for Samples from the DRC N = 1881
Colony 58 (12, 323)
Colony.cat
    a_Very_High_Risk 71 (38%)
    High_Risk 72 (38%)
    Intermediate_Risk 39 (21%)
    Low_Risk 6 (3.2%)
1 Median (IQR); n (%)

Create Categorical Variables: WHO Risks for Rwanda:

#rf_at_wq_Rwanda_all$Categories <- cut(rf_at_wq_Rwanda_all$MPN,
              #breaks=c(0, 1, 10, 100, 100000),
              #labels=c('Low_Risk', 'Intermediate Risk', 'High_Risk', 'Very_High_Risk'))

rf_at_wq_Rwanda_all <- within(rf_at_wq_Rwanda_all, {   
  MPN.cat <- NA # need to initialize variable
  MPN.cat[MPN < 1] <- "Low_Risk"
  MPN.cat[MPN >= 1 & MPN < 11 ] <- "Intermediate_Risk"
  MPN.cat[MPN >= 11 & MPN < 100] <- "High_Risk"  
  MPN.cat[MPN >= 100] <- "a_Very_High_Risk"
   } )
  
table1 <- 
  rf_at_wq_Rwanda_all %>%
  tbl_summary(include = c(MPN, MPN.cat))%>%
  modify_header(label = "**WHO Risk Categories for Samples from the Rwanda**")

table1
WHO Risk Categories for Samples from the Rwanda N = 9161
MPN 10 (0, 100)
MPN.cat
    a_Very_High_Risk 305 (33%)
    High_Risk 146 (16%)
    Intermediate_Risk 186 (20%)
    Low_Risk 279 (30%)
1 Median (IQR); n (%)

Multinomial Logistic Regression Model of water quality versus precipitation in the DRC:

#rf_at_wq_DRC_all$Colony2.cat <- relevel(rf_at_wq_DRC_all$Colony.cat, ref = "imerg_rf")
#test <- multinom(Colony2.cat ~ imerg_rf, data = rf_at_wq_DRC_all)
#summary(test)

#mldata <- mlogit.data(mydata, choice="y", shape="wide")
#mlogit.model1 <- mlogit(y ~ 1| col1+col2, data=mldata)

#mlogit.model2 = multinom(y ~ 1 + col1+col2, data=mydata)
#stargazer(mlogit.model2)

#my.model <- multinom(Colony.cat ~ imerg_rf, data=rf_at_wq_DRC_all)
#tidy(my.model, exponentiate = FALSE) #display model
# calculate predicted probabilities
#pred.probs <- predict(my.model, type = "probs")

mlr_DRC <- multinom(Colony.cat ~ imerg_rf, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 219.289268
final  value 219.273108 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ imerg_rf, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)    imerg_rf
High_Risk         -0.09973338  0.01364508
Intermediate_Risk -0.68843371  0.01113391
Low_Risk          -2.39765536 -0.01237835

Std. Errors:
                  (Intercept)   imerg_rf
High_Risk           0.1918431 0.01139343
Intermediate_Risk   0.2285109 0.01340820
Low_Risk            0.4668177 0.03760472

Residual Deviance: 438.5462 
AIC: 450.5462 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.905 | 0.174 | [0.621, 1.318] | -0.520 | 0.603
imerg rf    |      1.014 | 0.012 | [0.991, 1.037] |  1.198 | 0.231

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.502 | 0.115 | [0.321, 0.786] | -3.013 | 0.003
imerg rf    |      1.011 | 0.014 | [0.985, 1.038] |  0.830 | 0.406

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.091 | 0.042 | [0.036, 0.227] | -5.136 | < .001
imerg rf    |      0.988 | 0.037 | [0.918, 1.063] | -0.329 | 0.742 

Model: Colony.cat ~ imerg_rf (188 Observations)
Residual standard deviation: 1.552 (df = 182)
McFadden's R2: 0.004; adjusted McFadden's R2: -9.858e-05

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="imerg_rf")
Data were 'prettified'. Consider using `terms="imerg_rf [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: a_Very_High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.4003 | 0.3811, 0.4198
      15 |    0.3597 | 0.3423, 0.3776
      25 |    0.3330 | 0.3104, 0.3563
      40 |    0.2940 | 0.2635, 0.3264
      65 |    0.2340 | 0.1970, 0.2755

Colony.cat: High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.3623 | 0.3443, 0.3806
      15 |    0.3995 | 0.3814, 0.4180
      25 |    0.4239 | 0.3986, 0.4495
      40 |    0.4592 | 0.4188, 0.5002
      65 |    0.5141 | 0.4449, 0.5828

Colony.cat: Intermediate_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.2011 | 0.1908, 0.2118
      15 |    0.2136 | 0.2031, 0.2244
      25 |    0.2210 | 0.2064, 0.2362
      40 |    0.2305 | 0.2069, 0.2560
      65 |    0.2424 | 0.2010, 0.2892

Colony.cat: Low_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.0364 | 0.0353, 0.0375
      15 |    0.0272 | 0.0264, 0.0279
      25 |    0.0222 | 0.0215, 0.0230
      40 |    0.0163 | 0.0156, 0.0170
      65 |    0.0095 | 0.0091, 0.0099

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus precipitation in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ imerg_rf, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1221.974274
iter  10 value 1221.974265
iter  10 value 1221.974265
final  value 1221.974265 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ imerg_rf, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept)    imerg_rf
High_Risk          -0.6412248 -0.02597848
Intermediate_Risk  -0.2898038 -0.06212777
Low_Risk            0.1585346 -0.07867744

Std. Errors:
                  (Intercept)   imerg_rf
High_Risk           0.1252073 0.02096928
Intermediate_Risk   0.1153131 0.02199606
Low_Risk            0.1031090 0.02021751

Residual Deviance: 2443.949 
AIC: 2455.949 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.527 | 0.066 | [0.412, 0.673] | -5.121 | < .001
imerg rf    |      0.974 | 0.020 | [0.935, 1.015] | -1.239 | 0.215 

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.748 | 0.086 | [0.597, 0.938] | -2.513 | 0.012
imerg rf    |      0.940 | 0.021 | [0.900, 0.981] | -2.824 | 0.005

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      1.172 | 0.121 | [0.957, 1.434] |  1.538 | 0.124 
imerg rf    |      0.924 | 0.019 | [0.888, 0.962] | -3.892 | < .001

Model: MPN.cat ~ imerg_rf (916 Observations)
Residual standard deviation: 1.639 (df = 910)
McFadden's R2: 0.008; adjusted McFadden's R2: 0.007

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="imerg_rf")
Data were 'prettified'. Consider using `terms="imerg_rf [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: a_Very_High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.2901 | 0.2829, 0.2975
       5 |    0.3569 | 0.3492, 0.3647
      15 |    0.4972 | 0.4739, 0.5204
      20 |    0.5643 | 0.5329, 0.5952
      35 |    0.7289 | 0.6881, 0.7663

MPN.cat: High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.1528 | 0.1492, 0.1565
       5 |    0.1651 | 0.1615, 0.1687
      15 |    0.1773 | 0.1673, 0.1878
      20 |    0.1768 | 0.1631, 0.1913
      35 |    0.1546 | 0.1342, 0.1775

MPN.cat: Intermediate_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.2171 | 0.2115, 0.2229
       5 |    0.1958 | 0.1913, 0.2004
      15 |    0.1465 | 0.1386, 0.1548
      20 |    0.1219 | 0.1140, 0.1303
      35 |    0.0620 | 0.0577, 0.0667

MPN.cat: Low_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.3400 | 0.3313, 0.3487
       5 |    0.2822 | 0.2755, 0.2890
      15 |    0.1790 | 0.1690, 0.1894
      20 |    0.1371 | 0.1282, 0.1464
      35 |    0.0544 | 0.0513, 0.0577

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus 30-day precipitation in the DRC:

mlr_DRC <- multinom(Colony.cat ~ img30d, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 216.843685
final  value 216.752599 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ img30d, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)       img30d
High_Risk          -0.1980589  0.001092302
Intermediate_Risk  -0.4212866 -0.001041587
Low_Risk           -1.6751767 -0.006798145

Std. Errors:
                  (Intercept)      img30d
High_Risk           0.2761186 0.001130589
Intermediate_Risk   0.3035702 0.001365130
Low_Risk            0.5169491 0.003969756

Residual Deviance: 433.5052 
AIC: 445.5052 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.820 | 0.227 | [0.477, 1.409] | -0.717 | 0.473
img30d      |      1.001 | 0.001 | [0.999, 1.003] |  0.966 | 0.334

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.656 | 0.199 | [0.362, 1.190] | -1.388 | 0.165
img30d      |      0.999 | 0.001 | [0.996, 1.002] | -0.763 | 0.445

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.187 | 0.097 | [0.068, 0.516] | -3.241 | 0.001
img30d      |      0.993 | 0.004 | [0.986, 1.001] | -1.712 | 0.087

Model: Colony.cat ~ img30d (188 Observations)
Residual standard deviation: 1.543 (df = 182)
McFadden's R2: 0.016; adjusted McFadden's R2: 0.011

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="img30d")
Data were 'prettified'. Consider using `terms="img30d [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: a_Very_High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3754 | 0.3500, 0.4015
   100 |    0.3844 | 0.3656, 0.4036
   200 |    0.3844 | 0.3677, 0.4013
   300 |    0.3784 | 0.3578, 0.3994
   500 |    0.3556 | 0.3196, 0.3933

Colony.cat: High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3080 | 0.2864, 0.3304
   100 |    0.3518 | 0.3338, 0.3701
   200 |    0.3923 | 0.3755, 0.4094
   300 |    0.4307 | 0.4088, 0.4529
   500 |    0.5036 | 0.4608, 0.5464

Colony.cat: Intermediate_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.2463 | 0.2284, 0.2652
   100 |    0.2273 | 0.2155, 0.2395
   200 |    0.2048 | 0.1953, 0.2146
   300 |    0.1817 | 0.1713, 0.1925
   500 |    0.1386 | 0.1264, 0.1517

Colony.cat: Low_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.0703 | 0.0663, 0.0746
   100 |    0.0365 | 0.0354, 0.0376
   200 |    0.0185 | 0.0181, 0.0189
   300 |    0.0092 | 0.0091, 0.0094
   500 |    0.0022 | 0.0022, 0.0022

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus 30-day precipitation in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ img30d, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1213.456561
final  value 1213.456471 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ img30d, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept)       img30d
High_Risk          -0.9781305  0.002079402
Intermediate_Risk  -0.9046845  0.003460123
Low_Risk            0.4567398 -0.005305365

Std. Errors:
                  (Intercept)      img30d
High_Risk           0.2234346 0.001698283
Intermediate_Risk   0.2116255 0.001581524
Low_Risk            0.1661933 0.001399585

Residual Deviance: 2426.913 
AIC: 2438.913 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.376 | 0.084 | [0.243, 0.583] | -4.378 | < .001
img30d      |      1.002 | 0.002 | [0.999, 1.005] |  1.224 | 0.221 

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.405 | 0.086 | [0.267, 0.613] | -4.275 | < .001
img30d      |      1.003 | 0.002 | [1.000, 1.007] |  2.188 | 0.029 

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      1.579 | 0.262 | [1.140, 2.187] |  2.748 | 0.006 
img30d      |      0.995 | 0.001 | [0.992, 0.997] | -3.791 | < .001

Model: MPN.cat ~ img30d (916 Observations)
Residual standard deviation: 1.633 (df = 910)
McFadden's R2: 0.015; adjusted McFadden's R2: 0.014

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="img30d")
Data were 'prettified'. Consider using `terms="img30d [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: a_Very_High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.2977 | 0.2850, 0.3106
    60 |    0.3255 | 0.3168, 0.3343
   120 |    0.3412 | 0.3342, 0.3483
   160 |    0.3444 | 0.3354, 0.3534
   280 |    0.3229 | 0.3029, 0.3436

MPN.cat: High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.1119 | 0.1081, 0.1159
    60 |    0.1386 | 0.1351, 0.1422
   120 |    0.1647 | 0.1613, 0.1680
   160 |    0.1806 | 0.1759, 0.1854
   280 |    0.2173 | 0.2026, 0.2329

MPN.cat: Intermediate_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.1205 | 0.1163, 0.1247
    60 |    0.1621 | 0.1578, 0.1665
   120 |    0.2091 | 0.2047, 0.2136
   160 |    0.2424 | 0.2359, 0.2490
   280 |    0.3443 | 0.3206, 0.3688

MPN.cat: Low_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.4700 | 0.4525, 0.4875
    60 |    0.3738 | 0.3643, 0.3834
   120 |    0.2850 | 0.2788, 0.2913
   160 |    0.2327 | 0.2263, 0.2391
   280 |    0.1154 | 0.1107, 0.1203

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus runoff in the DRC:

mlr_DRC <- multinom(Colony.cat ~ lis_runoff, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 219.222444
final  value 219.202157 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ lis_runoff, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)  lis_runoff
High_Risk         -0.09314299  0.03308681
Intermediate_Risk -0.66208654  0.02138298
Low_Risk          -2.44883586 -0.01032391

Std. Errors:
                  (Intercept) lis_runoff
High_Risk           0.1846791 0.02465471
Intermediate_Risk   0.2187988 0.02953443
Low_Risk            0.4570339 0.07674746

Residual Deviance: 438.4043 
AIC: 450.4043 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.911 | 0.168 | [0.634, 1.308] | -0.504 | 0.614
lis runoff  |      1.034 | 0.025 | [0.985, 1.085] |  1.342 | 0.180

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.516 | 0.113 | [0.336, 0.792] | -3.026 | 0.002
lis runoff  |      1.022 | 0.030 | [0.964, 1.082] |  0.724 | 0.469

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.086 | 0.039 | [0.035, 0.212] | -5.358 | < .001
lis runoff  |      0.990 | 0.076 | [0.852, 1.150] | -0.135 | 0.893 

Model: Colony.cat ~ lis_runoff (188 Observations)
Residual standard deviation: 1.552 (df = 182)
McFadden's R2: 0.005; adjusted McFadden's R2: 2.236e-04

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="lis_runoff")
Data were 'prettified'. Consider using `terms="lis_runoff [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: a_Very_High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3979 | 0.3795, 0.4166
         5 |    0.3662 | 0.3495, 0.3831
        10 |    0.3350 | 0.3135, 0.3572
        20 |    0.2757 | 0.2438, 0.3101
        30 |    0.2222 | 0.1866, 0.2623

Colony.cat: High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3625 | 0.3452, 0.3801
         5 |    0.3936 | 0.3765, 0.4110
        10 |    0.4249 | 0.4014, 0.4488
        20 |    0.4868 | 0.4415, 0.5324
        30 |    0.5461 | 0.4774, 0.6132

Colony.cat: Intermediate_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.2052 | 0.1951, 0.2158
         5 |    0.2102 | 0.2004, 0.2203
        10 |    0.2140 | 0.2007, 0.2278
        20 |    0.2181 | 0.1935, 0.2448
        30 |    0.2176 | 0.1812, 0.2591

Colony.cat: Low_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.0344 | 0.0334, 0.0354
         5 |    0.0300 | 0.0293, 0.0308
        10 |    0.0261 | 0.0252, 0.0270
        20 |    0.0194 | 0.0184, 0.0204
        30 |    0.0141 | 0.0133, 0.0149

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus runoff in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ lis_runoff, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1221.403792
final  value 1221.403114 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ lis_runoff, data = rf_at_wq_Rwanda_all)

Coefficients:
                   (Intercept) lis_runoff
High_Risk         -0.796595106  0.1185305
Intermediate_Risk -0.441459976 -0.1626626
Low_Risk           0.003076488 -0.3432319

Std. Errors:
                  (Intercept) lis_runoff
High_Risk          0.10820638 0.07441506
Intermediate_Risk  0.09834871 0.10590018
Low_Risk           0.08790348 0.12345653

Residual Deviance: 2442.806 
AIC: 2454.806 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.451 | 0.049 | [0.365, 0.557] | -7.362 | < .001
lis runoff  |      1.126 | 0.084 | [0.973, 1.303] |  1.593 | 0.111 

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.643 | 0.063 | [0.530, 0.780] | -4.489 | < .001
lis runoff  |      0.850 | 0.090 | [0.691, 1.046] | -1.536 | 0.125 

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.003 | 0.088 | [0.844, 1.192] |  0.035 | 0.972
lis runoff  |      0.709 | 0.088 | [0.557, 0.904] | -2.780 | 0.005

Model: MPN.cat ~ lis_runoff (916 Observations)
Residual standard deviation: 1.638 (df = 910)
McFadden's R2: 0.008; adjusted McFadden's R2: 0.008

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="lis_runoff")
Data were 'prettified'. Consider using `terms="lis_runoff [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: a_Very_High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3229 | 0.3159, 0.3299
         2 |    0.3936 | 0.3782, 0.4091
         4 |    0.4322 | 0.4028, 0.4620
         6 |    0.4370 | 0.3927, 0.4823
         8 |    0.4161 | 0.3571, 0.4777

MPN.cat: High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.1456 | 0.1426, 0.1486
         2 |    0.2249 | 0.2165, 0.2335
         4 |    0.3130 | 0.2900, 0.3370
         6 |    0.4012 | 0.3579, 0.4462
         8 |    0.4843 | 0.4198, 0.5492

MPN.cat: Intermediate_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.2076 | 0.2031, 0.2123
         2 |    0.1828 | 0.1745, 0.1914
         4 |    0.1450 | 0.1339, 0.1568
         6 |    0.1059 | 0.0962, 0.1165
         8 |    0.0728 | 0.0662, 0.0801

MPN.cat: Low_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3239 | 0.3168, 0.3311
         2 |    0.1987 | 0.1878, 0.2101
         4 |    0.1098 | 0.1016, 0.1186
         6 |    0.0559 | 0.0523, 0.0598
         8 |    0.0268 | 0.0256, 0.0281

Multinomial Logistic Regression Model of water quality versus 7-day runoff in the DRC:

mlr_DRC <- multinom(Colony.cat ~ lis7d, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 217.386109
final  value 216.924994 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ lis7d, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)        lis7d
High_Risk          -0.2185568  0.011998578
Intermediate_Risk  -0.6687508  0.004036902
Low_Risk           -2.0210122 -0.054224952

Std. Errors:
                  (Intercept)       lis7d
High_Risk           0.2185943 0.007295964
Intermediate_Risk   0.2532893 0.008930196
Low_Risk            0.4714176 0.044772937

Residual Deviance: 433.85 
AIC: 445.85 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.804 | 0.176 | [0.524, 1.234] | -1.000 | 0.317
lis7d       |      1.012 | 0.007 | [0.998, 1.027] |  1.645 | 0.100

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.512 | 0.130 | [0.312, 0.842] | -2.640 | 0.008
lis7d       |      1.004 | 0.009 | [0.987, 1.022] |  0.452 | 0.651

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.133 | 0.062 | [0.053, 0.334] | -4.287 | < .001
lis7d       |      0.947 | 0.042 | [0.868, 1.034] | -1.211 | 0.226 

Model: Colony.cat ~ lis7d (188 Observations)
Residual standard deviation: 1.544 (df = 182)
McFadden's R2: 0.015; adjusted McFadden's R2: 0.011

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="lis7d")
Data were 'prettified'. Consider using `terms="lis7d [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: a_Very_High_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.4084 | 0.3866, 0.4306
   20 |    0.3814 | 0.3648, 0.3983
   40 |    0.3429 | 0.3220, 0.3645
   50 |    0.3226 | 0.2982, 0.3479
   90 |    0.2437 | 0.2111, 0.2794

Colony.cat: High_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.3282 | 0.3096, 0.3474
   20 |    0.3897 | 0.3729, 0.4067
   40 |    0.4454 | 0.4217, 0.4693
   50 |    0.4723 | 0.4426, 0.5023
   90 |    0.5766 | 0.5202, 0.6310

Colony.cat: Intermediate_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.2092 | 0.1971, 0.2219
   20 |    0.2118 | 0.2021, 0.2219
   40 |    0.2065 | 0.1938, 0.2198
   50 |    0.2022 | 0.1870, 0.2183
   90 |    0.1795 | 0.1556, 0.2062

Colony.cat: Low_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.0541 | 0.0518, 0.0565
   20 |    0.0171 | 0.0166, 0.0175
   40 |    0.0052 | 0.0051, 0.0053
   50 |    0.0028 | 0.0028, 0.0029
   90 |    0.0002 | 0.0002, 0.0002

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus 7-day runoff in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ lis7d, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1210.653330
final  value 1210.648707 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ lis7d, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept)        lis7d
High_Risk          -0.7568568  0.008152867
Intermediate_Risk  -0.3953586 -0.045353585
Low_Risk            0.2405451 -0.202363026

Std. Errors:
                  (Intercept)      lis7d
High_Risk           0.1242531 0.02928387
Intermediate_Risk   0.1129923 0.03017519
Low_Risk            0.1003890 0.03807930

Residual Deviance: 2421.297 
AIC: 2433.297 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.469 | 0.058 | [0.368, 0.599] | -6.091 | < .001
lis7d       |      1.008 | 0.030 | [0.952, 1.068] |  0.278 | 0.781 

# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.673 | 0.076 | [0.540, 0.840] | -3.499 | < .001
lis7d       |      0.956 | 0.029 | [0.901, 1.014] | -1.503 | 0.133 

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      1.272 | 0.128 | [1.045, 1.549] |  2.396 | 0.017 
lis7d       |      0.817 | 0.031 | [0.758, 0.880] | -5.314 | < .001

Model: MPN.cat ~ lis7d (916 Observations)
Residual standard deviation: 1.631 (df = 910)
McFadden's R2: 0.017; adjusted McFadden's R2: 0.016

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="lis7d")
Data were 'prettified'. Consider using `terms="lis7d [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: a_Very_High_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.2929 | 0.2857, 0.3002
    2 |    0.3401 | 0.3330, 0.3472
    6 |    0.4196 | 0.4063, 0.4330
    8 |    0.4502 | 0.4321, 0.4684
   14 |    0.5108 | 0.4760, 0.5456

MPN.cat: High_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.1374 | 0.1344, 0.1405
    2 |    0.1622 | 0.1589, 0.1655
    6 |    0.2067 | 0.1997, 0.2139
    8 |    0.2254 | 0.2150, 0.2362
   14 |    0.2686 | 0.2444, 0.2943

MPN.cat: Intermediate_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.1972 | 0.1924, 0.2021
    2 |    0.2092 | 0.2047, 0.2136
    6 |    0.2152 | 0.2075, 0.2232
    8 |    0.2109 | 0.2009, 0.2213
   14 |    0.1823 | 0.1676, 0.1980

MPN.cat: Low_Risk

lis7d | Predicted |         95% CI
----------------------------------
    0 |    0.3725 | 0.3633, 0.3818
    2 |    0.2886 | 0.2822, 0.2951
    6 |    0.1585 | 0.1521, 0.1651
    8 |    0.1134 | 0.1085, 0.1186
   14 |    0.0382 | 0.0370, 0.0395

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Updated Logistic Regression Model of water quality versus rainfall in Rwanda:

glmmodelRwanda <- glm(MPN ~ imerg_rf, data = rf_at_wq_Rwanda_all, family = "gaussian")
summary(glmmodelRwanda)

Call:
glm(formula = MPN ~ imerg_rf, family = "gaussian", data = rf_at_wq_Rwanda_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  34.4567     1.7938  19.209  < 2e-16 ***
imerg_rf      1.4186     0.3244   4.372 1.37e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1974.27)

    Null deviance: 1842227  on 915  degrees of freedom
Residual deviance: 1804483  on 914  degrees of freedom
AIC: 9554.1

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus rainfall in DRC:

glmmodelDRC <- glm(Colony ~ imerg_rf, data = rf_at_wq_DRC_all, family = "gaussian")
summary(glmmodelDRC)

Call:
glm(formula = Colony ~ imerg_rf, family = "gaussian", data = rf_at_wq_DRC_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   940.23     183.62   5.121 7.57e-07 ***
imerg_rf      -20.59      10.55  -1.952   0.0524 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4827821)

    Null deviance: 916368732  on 187  degrees of freedom
Residual deviance: 897974702  on 186  degrees of freedom
AIC: 3430.8

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus 30-day rainfall in Rwanda:

glmmodelRwanda <- glm(MPN ~ img30d, data = rf_at_wq_Rwanda_all, family = "gaussian")
summary(glmmodelRwanda)

Call:
glm(formula = MPN ~ img30d, family = "gaussian", data = rf_at_wq_Rwanda_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 35.25241    3.07098   11.48   <2e-16 ***
img30d       0.03366    0.02440    1.38    0.168    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 2011.378)

    Null deviance: 1842227  on 915  degrees of freedom
Residual deviance: 1838399  on 914  degrees of freedom
AIC: 9571.1

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus 30-day rainfall in DRC:

glmmodelDRC <- glm(Colony ~ img30d, data = rf_at_wq_DRC_all, family = "gaussian")
summary(glmmodelDRC)

Call:
glm(formula = Colony ~ img30d, family = "gaussian", data = rf_at_wq_DRC_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 703.3777   256.1615   2.746  0.00663 **
img30d        0.3384     1.0858   0.312  0.75566   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4924143)

    Null deviance: 916368732  on 187  degrees of freedom
Residual deviance: 915890505  on 186  degrees of freedom
AIC: 3434.5

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus runoff in Rwanda:

glmmodelRwanda <- glm(MPN ~ lis_runoff, data = rf_at_wq_Rwanda_all, family = "gaussian")
summary(glmmodelRwanda)

Call:
glm(formula = MPN ~ lis_runoff, family = "gaussian", data = rf_at_wq_Rwanda_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   37.901      1.561  24.273   <2e-16 ***
lis_runoff     3.091      1.450   2.131   0.0333 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 2005.597)

    Null deviance: 1842227  on 915  degrees of freedom
Residual deviance: 1833115  on 914  degrees of freedom
AIC: 9568.5

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus runoff in DRC:

glmmodelDRC <- glm(Colony ~ lis_runoff, data = rf_at_wq_DRC_all, family = "gaussian")
summary(glmmodelDRC)

Call:
glm(formula = Colony ~ lis_runoff, family = "gaussian", data = rf_at_wq_DRC_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   891.69     176.99   5.038 1.11e-06 ***
lis_runoff    -38.25      22.48  -1.701   0.0905 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4851215)

    Null deviance: 916368732  on 187  degrees of freedom
Residual deviance: 902326018  on 186  degrees of freedom
AIC: 3431.7

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus 7-day runoff in Rwanda:

glmmodelRwanda <- glm(MPN ~ lis7d, data = rf_at_wq_Rwanda_all, family = "gaussian")
summary(glmmodelRwanda)

Call:
glm(formula = MPN ~ lis7d, family = "gaussian", data = rf_at_wq_Rwanda_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  34.9397     1.7558  19.900  < 2e-16 ***
lis7d         2.0687     0.4942   4.186 3.11e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1977.648)

    Null deviance: 1842227  on 915  degrees of freedom
Residual deviance: 1807570  on 914  degrees of freedom
AIC: 9555.6

Number of Fisher Scoring iterations: 2

Updated Logistic Regression Model of water quality versus 7-day runoff in DRC:

glmmodelDRC <- glm(Colony ~ lis7d, data = rf_at_wq_DRC_all, family = "gaussian")
summary(glmmodelDRC)

Call:
glm(formula = Colony ~ lis7d, family = "gaussian", data = rf_at_wq_DRC_all)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  843.152    207.889   4.056 7.34e-05 ***
lis7d         -4.149      6.958  -0.596    0.552    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4917312)

    Null deviance: 916368732  on 187  degrees of freedom
Residual deviance: 914620008  on 186  degrees of freedom
AIC: 3434.3

Number of Fisher Scoring iterations: 2