1. Explore the following four time series:
Bricks from aus_production, Lynx
from pelt, Close from gafa_stock,
Demand from vic_elec.
A) Use ? (or help()) to find out about the data in each series.
Answer:
Let’s load the library first
library(fpp3)
## ── Attaching packages ────────────────────────────────────────────── fpp3 0.5 ──
## ✔ tibble 3.2.1 ✔ tsibble 1.1.4
## ✔ dplyr 1.1.4 ✔ tsibbledata 0.4.1
## ✔ tidyr 1.3.0 ✔ feasts 0.3.1
## ✔ lubridate 1.9.3 ✔ fable 0.3.3
## ✔ ggplot2 3.4.4 ✔ fabletools 0.3.4
## ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
## ✖ lubridate::date() masks base::date()
## ✖ dplyr::filter() masks stats::filter()
## ✖ tsibble::intersect() masks base::intersect()
## ✖ tsibble::interval() masks lubridate::interval()
## ✖ dplyr::lag() masks stats::lag()
## ✖ tsibble::setdiff() masks base::setdiff()
## ✖ tsibble::union() masks base::union()
Now let’s check each data set one by one.
?aus_production
?pelt
?gafa_stock
?vic_elec
B) What is the time interval of each series?
Answer:
interval(aus_production)
## <interval[1]>
## [1] 1Q
interval(pelt)
## <interval[1]>
## [1] 1Y
interval(gafa_stock)
## <interval[1]>
## [1] !
interval(vic_elec)
## <interval[1]>
## [1] 30m
C) Use autoplot() to produce a time plot of each series. D) For the last plot, modify the axis labels and title.
Answer:
autoplot(aus_production, Bricks)+ggtitle("Quarterly Bricks Production in Australia")
autoplot(gafa_stock, Close) + ggtitle("Historical stock prices from 2014-2018") + xlab("Year") + ylab("Closing Price")
autoplot(vic_elec, Demand) + ggtitle("Half-hourly electricity demand for Victoria, Australia") + xlab("Year") + ylab("Demand")
autoplot(pelt, Lynx) + ggtitle("Pelt trading records") + xlab("Year") + ylab("Records")
2. Use filter() to find what days corresponded to the peak closing price for each of the four stocks in gafa_stock.
Answer:
library(dplyr)
data(gafa_stock)
gafa_stock %>%
group_by(Symbol) %>%
filter(Close == max(Close)) %>% #Keeps rows where Close value = max close value
select(Symbol, Date, Close)
## # A tsibble: 4 x 3 [!]
## # Key: Symbol [4]
## # Groups: Symbol [4]
## Symbol Date Close
## <chr> <date> <dbl>
## 1 AAPL 2018-10-03 232.
## 2 AMZN 2018-09-04 2040.
## 3 FB 2018-07-25 218.
## 4 GOOG 2018-07-26 1268.
3. Download the file tute1.csv from the book website, open it in Excel (or some other spreadsheet application), and review its contents. You should find four columns of information. Columns B through D each contain a quarterly series, labelled Sales, AdBudget and GDP. Sales contains the quarterly sales for a small company over the period 1981-2005. AdBudget is the advertising budget and GDP is the gross domestic product. All series have been adjusted for inflation.
A. You can read the data into R with the following script:
Answer:
tute1 <- readr::read_csv("https://otexts.com/fpp3/extrafiles/tute1.csv")
## Rows: 100 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): Sales, AdBudget, GDP
## date (1): Quarter
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#View(tute1)
B. Convert the data to time series
Answer:
mytimeseries <- tute1 |>
mutate(Quarter = yearquarter(Quarter)) |>
as_tsibble(index = Quarter)
C. Construct time series plots of each of the three series
Answer:
mytimeseries |>
pivot_longer(-Quarter) |>
ggplot(aes(x = Quarter, y = value, colour = name)) +
geom_line() +
facet_grid(name ~ ., scales = "free_y")
Check what happens when you don’t include facet_grid().
Answer:
mytimeseries |>
pivot_longer(-Quarter) |>
ggplot(aes(x = Quarter, y = value, colour = name)) +
geom_line()
4. The USgas package contains data on the demand for natural gas in the US.
A. Install the USgas package.
Answer:
#install.packages("USgas")
library(USgas)
B. Create a tsibble from us_total with year as the index and state as the key.
Answer:
us_total <- us_total |>
as_tibble(key =state, index =year)
C. Plot the annual natural gas consumption by state for the New England area (comprising the states of Maine, Vermont, New Hampshire, Massachusetts, Connecticut and Rhode Island).
Answer:
us_total %>%
filter(state %in% c('Maine', 'Vermont', 'New Hampshire', 'Massachusetts', 'Connecticut', 'Rhode Island')) %>%
ggplot(aes(x = year, y = y, colour = state)) +
geom_line() +
facet_grid(state ~., scales = "free_y") +
labs(title = "Annual Natural Gas Consumption in New England",
y = "Consumption")
The annual natural has consumption follows an increasing trend for Connecticut, Massachusetts, and Vermont, and is decreasing in the remaining states.
5. A. Download tourism.xlsx from the book website and read it into R using readxl::read_excel().
tourism <- readxl::read_excel("/Users/umerfarooq/Downloads/tourism.xlsx")
B. Create a tsibble which is identical to the tourism tsibble from the tsibble package.
tourism_ts <- tourism %>%
mutate(Quarter = yearquarter(Quarter)) %>%
as_tsibble(key = c(Region, State, Purpose),
index = Quarter)
C. Find what combination of Region and Purpose had the maximum number of overnight trips on average.
tourism_ts %>%
group_by(Region, Purpose) %>%
mutate(Avg_Trips = mean(Trips)) %>%
ungroup() %>%
filter(Avg_Trips == max(Avg_Trips)) %>%
distinct(Region, Purpose)
## # A tibble: 1 × 2
## Region Purpose
## <chr> <chr>
## 1 Sydney Visiting
D. Create a new tsibble which combines the Purposes and Regions, and just has total trips by State.
tourism %>%
group_by(Quarter, State) %>%
mutate(Quarter = yearquarter(Quarter),
Total_Trips = sum(Trips)) %>%
select(Quarter, State, Total_Trips) %>%
distinct() %>%
as_tsibble(index = Quarter,
key = State)
## # A tsibble: 640 x 3 [1Q]
## # Key: State [8]
## # Groups: State @ Quarter [640]
## Quarter State Total_Trips
## <qtr> <chr> <dbl>
## 1 1998 Q1 ACT 551.
## 2 1998 Q2 ACT 416.
## 3 1998 Q3 ACT 436.
## 4 1998 Q4 ACT 450.
## 5 1999 Q1 ACT 379.
## 6 1999 Q2 ACT 558.
## 7 1999 Q3 ACT 449.
## 8 1999 Q4 ACT 595.
## 9 2000 Q1 ACT 600.
## 10 2000 Q2 ACT 557.
## # ℹ 630 more rows
8. Use the following graphics functions: autoplot(), gg_season(), gg_subseries(), gg_lag(), ACF() and explore features from the following time series: “Total Private” Employed from us_employment, Bricks from aus_production, Hare from pelt, “H02” Cost from PBS, and Barrels from us_gasoline.
us_employement
us_employment
## # A tsibble: 143,412 x 4 [1M]
## # Key: Series_ID [148]
## Month Series_ID Title Employed
## <mth> <chr> <chr> <dbl>
## 1 1939 Jan CEU0500000001 Total Private 25338
## 2 1939 Feb CEU0500000001 Total Private 25447
## 3 1939 Mar CEU0500000001 Total Private 25833
## 4 1939 Apr CEU0500000001 Total Private 25801
## 5 1939 May CEU0500000001 Total Private 26113
## 6 1939 Jun CEU0500000001 Total Private 26485
## 7 1939 Jul CEU0500000001 Total Private 26481
## 8 1939 Aug CEU0500000001 Total Private 26848
## 9 1939 Sep CEU0500000001 Total Private 27468
## 10 1939 Oct CEU0500000001 Total Private 27830
## # ℹ 143,402 more rows
us_empl_tsi <- us_employment|>
filter(Title == 'Total Private')|>
as_tsibble(key = Title, index = Month)
autoplot(us_empl_tsi, Employed)
gg_season(us_empl_tsi, Employed)
gg_subseries(us_empl_tsi, Employed)
gg_lag(us_empl_tsi, Employed)
ACF(us_empl_tsi, Employed)
## # A tsibble: 29 x 3 [1M]
## # Key: Title [1]
## Title lag acf
## <chr> <cf_lag> <dbl>
## 1 Total Private 1M 0.997
## 2 Total Private 2M 0.993
## 3 Total Private 3M 0.990
## 4 Total Private 4M 0.986
## 5 Total Private 5M 0.983
## 6 Total Private 6M 0.980
## 7 Total Private 7M 0.977
## 8 Total Private 8M 0.974
## 9 Total Private 9M 0.971
## 10 Total Private 10M 0.968
## # ℹ 19 more rows
The overall trend is increasing for the Employed in
us_employement. Seasonality is also present with some
cyclic behavior almost every 10 years
aus_production:
autoplot(aus_production, Bricks)
## Warning: Removed 20 rows containing missing values (`geom_line()`).
gg_season(aus_production, Bricks)
## Warning: Removed 20 rows containing missing values (`geom_line()`).
gg_subseries(aus_production, Bricks)
## Warning: Removed 5 rows containing missing values (`geom_line()`).
gg_lag(aus_production, Bricks)
## Warning: Removed 20 rows containing missing values (gg_lag).
ACF(aus_production, Bricks)
## # A tsibble: 22 x 2 [1Q]
## lag acf
## <cf_lag> <dbl>
## 1 1Q 0.900
## 2 2Q 0.815
## 3 3Q 0.813
## 4 4Q 0.828
## 5 5Q 0.720
## 6 6Q 0.642
## 7 7Q 0.655
## 8 8Q 0.692
## 9 9Q 0.609
## 10 10Q 0.556
## # ℹ 12 more rows
The first 20 years shows an increase in the trend followed by a
slight decrease in trend in. the next 25 years. Seasonality is present
and can be witnessed in gg_season(). A cycle can also be
seen since the the trend changes mid data.
pelt:
autoplot(pelt, Hare)
#gg_season(pelt, Hare)
gg_subseries(pelt, Hare)
gg_lag(pelt, Hare)
ACF(pelt, Hare)
## # A tsibble: 19 x 2 [1Y]
## lag acf
## <cf_lag> <dbl>
## 1 1Y 0.658
## 2 2Y 0.214
## 3 3Y -0.155
## 4 4Y -0.401
## 5 5Y -0.493
## 6 6Y -0.401
## 7 7Y -0.168
## 8 8Y 0.113
## 9 9Y 0.307
## 10 10Y 0.340
## 11 11Y 0.296
## 12 12Y 0.206
## 13 13Y 0.0372
## 14 14Y -0.153
## 15 15Y -0.285
## 16 16Y -0.295
## 17 17Y -0.202
## 18 18Y -0.0676
## 19 19Y 0.0956
Well there is no obvious trend in the series and it is oscillating but I’m struggling to find any seasonality but only cyclic behavior.
PBS:
PBS_tsi <- PBS|>
filter(ATC2 == "H02")
autoplot(PBS_tsi, Cost)
gg_season(PBS_tsi, Cost)
gg_subseries(PBS_tsi, Cost)
#gg_lag(PBS_tsi, Cost)
ACF(PBS_tsi, Cost)
## # A tsibble: 92 x 6 [1M]
## # Key: Concession, Type, ATC1, ATC2 [4]
## Concession Type ATC1 ATC2 lag acf
## <chr> <chr> <chr> <chr> <cf_lag> <dbl>
## 1 Concessional Co-payments H H02 1M 0.834
## 2 Concessional Co-payments H H02 2M 0.679
## 3 Concessional Co-payments H H02 3M 0.514
## 4 Concessional Co-payments H H02 4M 0.352
## 5 Concessional Co-payments H H02 5M 0.264
## 6 Concessional Co-payments H H02 6M 0.219
## 7 Concessional Co-payments H H02 7M 0.253
## 8 Concessional Co-payments H H02 8M 0.337
## 9 Concessional Co-payments H H02 9M 0.464
## 10 Concessional Co-payments H H02 10M 0.574
## # ℹ 82 more rows
The graphs above have four series-es. An increase in the trend can be seen in concessional/co-payments/H/H02 with seasonality with peculiar behavior for year 2004-5. General/co-payments/H/H02 shows no seasonality with a no real trend.General/Safety net/H/H02 also has no trend but seasonality can be seen. Concessional/Safety net/H/H02 also has seasonailty in the series.
us_gasoline:
autoplot(us_gasoline, Barrels)
gg_season(us_gasoline, Barrels)
gg_subseries(us_gasoline, Barrels)
gg_lag(us_gasoline, Barrels)
ACF(us_gasoline, Barrels)
## # A tsibble: 31 x 2 [1W]
## lag acf
## <cf_lag> <dbl>
## 1 1W 0.893
## 2 2W 0.882
## 3 3W 0.873
## 4 4W 0.866
## 5 5W 0.847
## 6 6W 0.844
## 7 7W 0.832
## 8 8W 0.831
## 9 9W 0.822
## 10 10W 0.808
## # ℹ 21 more rows