\[ \begin{bmatrix} 1 & 3 \\ 6 & 2 \end{bmatrix} => 1(2) - 6(3) => 2 - 16 => -16 \]
Doing The Computation by hand, find the determinant of the matrix below. \[ \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} => 1(6) - 2(3) => 6 - 6 => 0 \]
Doing The Computation by hand, find the determinant of the matrix below. \[ \begin{bmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 1 & 0 & 1 \end{bmatrix} => 1 \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} - 3 \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} => 1(1(1)-0(3)) - 3(4(1)-1(3)) + 2(4(0)-1(1)) => 1(1-0) - 3(4-3) +2(0-1) => 1(1)-3(1)+2(1) => 1-3-2 => -4 \]
\[ \begin{bmatrix} -2 & 3 & -2 \\ -4 & -2 & 1 \\ 2 & 4 & 2 \end{bmatrix} => -2 \begin{bmatrix} -2 & 1 \\ 4 & 2 \end{bmatrix} -3 \begin{bmatrix} -4 & 1 \\ 2 & 2 \end{bmatrix} +(-2) \begin{bmatrix} -4 & -2 \\ 2 & 4 \end{bmatrix} = 2(-4-4)-3(-8-2)-2(-16+4) => -2(-8)-3(-10)-2(-12) => 16+30+24 =>70 \]