intial descriptives
describe.by(d$pun, group = d$chooserandom_1)
## Warning: describe.by is deprecated. Please use the describeBy function
##
## Descriptive statistics by group
## group: 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 3.13 3.14 2 2.7 2.97 0 10 10 0.86 -0.26 0.36
## ------------------------------------------------------------
## group: 2
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 3.88 3.54 3.5 3.62 3.71 0 10 10 0.52 -1.02 0.49
## ------------------------------------------------------------
## group: 3
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 2.12 2.53 1.5 1.71 2.22 0 10 10 1.22 1.07 0.33
## ------------------------------------------------------------
## group: 4
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 1.35 2.16 0 0.88 0 0 10 10 1.9 3.7 0.28
## ------------------------------------------------------------
## group: 5
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 1.41 2.3 0 0.93 0 0 10 10 2.16 4.82 0.31
## ------------------------------------------------------------
## group: 6
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 2.39 3.01 1 1.9 1.48 0 10 10 1.11 0.29 0.43
describeBy(d$pun, group = d$con)
##
## Descriptive statistics by group
## group: high hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 2.39 3.01 1 1.9 1.48 0 10 10 1.11 0.29 0.43
## ------------------------------------------------------------
## group: high real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 1.41 2.3 0 0.93 0 0 10 10 2.16 4.82 0.31
## ------------------------------------------------------------
## group: low hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 1.35 2.16 0 0.88 0 0 10 10 1.9 3.7 0.28
## ------------------------------------------------------------
## group: low real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 2.12 2.53 1.5 1.71 2.22 0 10 10 1.22 1.07 0.33
## ------------------------------------------------------------
## group: no hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 3.88 3.54 3.5 3.62 3.71 0 10 10 0.52 -1.02 0.49
## ------------------------------------------------------------
## group: no real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 3.13 3.14 2 2.7 2.97 0 10 10 0.86 -0.26 0.36
t.test(d$pun[d$real_con=="real"], d$pun[d$real_con=="hypo"], var.equal = T)
##
## Two Sample t-test
##
## data: d$pun[d$real_con == "real"] and d$pun[d$real_con == "hypo"]
## t = -0.52904, df = 348, p-value = 0.5971
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7879053 0.4538818
## sample estimates:
## mean of x mean of y
## 2.317460 2.484472
hist(d$pun)

descriptives
describeBy(d$pun, list(d$cost_con, d$real_con))
##
## Descriptive statistics by group
## : high
## : hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 2.39 3.01 1 1.9 1.48 0 10 10 1.11 0.29 0.43
## ------------------------------------------------------------
## : low
## : hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 1.35 2.16 0 0.88 0 0 10 10 1.9 3.7 0.28
## ------------------------------------------------------------
## : no
## : hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 3.88 3.54 3.5 3.62 3.71 0 10 10 0.52 -1.02 0.49
## ------------------------------------------------------------
## : high
## : real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 1.41 2.3 0 0.93 0 0 10 10 2.16 4.82 0.31
## ------------------------------------------------------------
## : low
## : real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 2.12 2.53 1.5 1.71 2.22 0 10 10 1.22 1.07 0.33
## ------------------------------------------------------------
## : no
## : real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 3.13 3.14 2 2.7 2.97 0 10 10 0.86 -0.26 0.36
describeBy(d$pun, group = list(d$cost_con, d$real_con))
##
## Descriptive statistics by group
## : high
## : hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 2.39 3.01 1 1.9 1.48 0 10 10 1.11 0.29 0.43
## ------------------------------------------------------------
## : low
## : hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 1.35 2.16 0 0.88 0 0 10 10 1.9 3.7 0.28
## ------------------------------------------------------------
## : no
## : hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 3.88 3.54 3.5 3.62 3.71 0 10 10 0.52 -1.02 0.49
## ------------------------------------------------------------
## : high
## : real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 1.41 2.3 0 0.93 0 0 10 10 2.16 4.82 0.31
## ------------------------------------------------------------
## : low
## : real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 2.12 2.53 1.5 1.71 2.22 0 10 10 1.22 1.07 0.33
## ------------------------------------------------------------
## : no
## : real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 3.13 3.14 2 2.7 2.97 0 10 10 0.86 -0.26 0.36
describeBy(d$pun, group = d$con)
##
## Descriptive statistics by group
## group: high hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 2.39 3.01 1 1.9 1.48 0 10 10 1.11 0.29 0.43
## ------------------------------------------------------------
## group: high real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 1.41 2.3 0 0.93 0 0 10 10 2.16 4.82 0.31
## ------------------------------------------------------------
## group: low hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 1.35 2.16 0 0.88 0 0 10 10 1.9 3.7 0.28
## ------------------------------------------------------------
## group: low real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 2.12 2.53 1.5 1.71 2.22 0 10 10 1.22 1.07 0.33
## ------------------------------------------------------------
## group: no hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 3.88 3.54 3.5 3.62 3.71 0 10 10 0.52 -1.02 0.49
## ------------------------------------------------------------
## group: no real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 3.13 3.14 2 2.7 2.97 0 10 10 0.86 -0.26 0.36
Main models - $ amount punishment
#hypo vs real by no cost vs other costs/ high vs low cost
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$noVsother + d$Highvslow))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$noVsother + d$Highvslow))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3800 0.1522 15.632 < 2e-16 ***
## d$HypoVsReal -0.3217 0.3045 -1.056 0.2916
## d$noVsother 1.6935 0.3174 5.335 1.74e-07 ***
## d$Highvslow -0.1642 0.3792 -0.433 0.6652
## d$HypoVsReal:d$noVsother -0.6444 0.6349 -1.015 0.3108
## d$HypoVsReal:d$Highvslow 1.7470 0.7584 2.303 0.0219 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
#hypo vs real by no cost vs low cost/ high vs other cost
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$novslow + d$highVsother))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$novslow + d$highVsother))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3800 0.1522 15.632 < 2e-16 ***
## d$HypoVsReal -0.3217 0.3045 -1.056 0.2916
## d$novslow 1.7756 0.3621 4.903 1.46e-06 ***
## d$highVsother -0.7236 0.3321 -2.179 0.0300 *
## d$HypoVsReal:d$novslow -1.5179 0.7243 -2.096 0.0368 *
## d$HypoVsReal:d$highVsother -0.9880 0.6641 -1.488 0.1377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
#hypo vs real by high cost vs no costs/ other vs low cost
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$highvsno + d$lowVsother))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$highvsno + d$lowVsother))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3224 0.1547 15.016 < 2e-16 ***
## d$HypoVsReal -0.4367 0.3093 -1.412 0.15890
## d$highvsno 1.7840 0.4125 4.325 2e-05 ***
## d$lowVsother -0.8836 0.3218 -2.746 0.00636 **
## d$HypoVsReal:d$highvsno 0.5743 0.8250 0.696 0.48688
## d$HypoVsReal:d$lowVsother 1.8051 0.6437 2.804 0.00533 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
main models + emotions
#difference in anger by hypo vs real by no cost vs other costs/ high vs low cost
m1 <- lm(d$anger ~ (d$HypoVsReal)*(d$noVsother + d$Highvslow))
summary(m1)
##
## Call:
## lm(formula = d$anger ~ (d$HypoVsReal) * (d$noVsother + d$Highvslow))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2901 -1.2444 0.5167 0.8500 3.7556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.202936 0.073986 43.291 <2e-16 ***
## d$HypoVsReal 0.101617 0.147973 0.687 0.493
## d$noVsother 0.029057 0.154256 0.188 0.851
## d$Highvslow 0.007943 0.184286 0.043 0.966
## d$HypoVsReal:d$noVsother -0.139348 0.308513 -0.452 0.652
## d$HypoVsReal:d$Highvslow -0.107244 0.368572 -0.291 0.771
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.371 on 344 degrees of freedom
## Multiple R-squared: 0.002123, Adjusted R-squared: -0.01238
## F-statistic: 0.1464 on 5 and 344 DF, p-value: 0.981
# ANGER for dictator
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$noVsother + d$Highvslow)*(d$anger))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$noVsother + d$Highvslow) *
## (d$anger))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9729 -1.9046 -0.7968 1.5027 9.2032
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.63094 0.38864 4.196 3.47e-05 ***
## d$HypoVsReal -0.40823 0.77729 -0.525 0.5998
## d$noVsother 3.17019 0.79816 3.972 8.72e-05 ***
## d$Highvslow 0.67488 0.98138 0.688 0.4921
## d$anger 0.23367 0.11178 2.090 0.0373 *
## d$HypoVsReal:d$noVsother 0.43881 1.59633 0.275 0.7836
## d$HypoVsReal:d$Highvslow 2.59738 1.96276 1.323 0.1866
## d$HypoVsReal:d$anger 0.01446 0.22356 0.065 0.9485
## d$noVsother:d$anger -0.45990 0.22824 -2.015 0.0447 *
## d$Highvslow:d$anger -0.25994 0.28368 -0.916 0.3602
## d$HypoVsReal:d$noVsother:d$anger -0.31726 0.45649 -0.695 0.4875
## d$HypoVsReal:d$Highvslow:d$anger -0.24155 0.56735 -0.426 0.6706
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.811 on 338 degrees of freedom
## Multiple R-squared: 0.1152, Adjusted R-squared: 0.0864
## F-statistic: 4 on 11 and 338 DF, p-value: 1.679e-05
#envy for dictator
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$noVsother + d$Highvslow)*(d$envy))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$noVsother + d$Highvslow) *
## (d$envy))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.614 -1.973 -1.054 1.317 8.595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.04011 0.44029 6.905 2.5e-11 ***
## d$HypoVsReal -0.24482 0.88058 -0.278 0.7812
## d$noVsother 2.06093 0.91075 2.263 0.0243 *
## d$Highvslow -0.24407 1.10468 -0.221 0.8253
## d$envy -0.20954 0.13629 -1.537 0.1251
## d$HypoVsReal:d$noVsother 2.98009 1.82151 1.636 0.1028
## d$HypoVsReal:d$Highvslow 1.76474 2.20935 0.799 0.4250
## d$HypoVsReal:d$envy -0.01588 0.27258 -0.058 0.9536
## d$noVsother:d$envy -0.09548 0.28505 -0.335 0.7379
## d$Highvslow:d$envy 0.03747 0.33847 0.111 0.9119
## d$HypoVsReal:d$noVsother:d$envy -1.16961 0.57010 -2.052 0.0410 *
## d$HypoVsReal:d$Highvslow:d$envy -0.02836 0.67695 -0.042 0.9666
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.817 on 338 degrees of freedom
## Multiple R-squared: 0.1111, Adjusted R-squared: 0.0822
## F-statistic: 3.841 on 11 and 338 DF, p-value: 3.13e-05
#guilt for recipient
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$noVsother + d$Highvslow)*(d$emotions_control_2))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$noVsother + d$Highvslow) *
## (d$emotions_control_2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.428 -1.882 -0.882 1.587 8.506
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 2.447955 0.440890 5.552
## d$HypoVsReal 0.883553 0.881780 1.002
## d$noVsother 1.419454 0.921960 1.540
## d$Highvslow -0.007901 1.095107 -0.007
## d$emotions_control_2 -0.014940 0.097736 -0.153
## d$HypoVsReal:d$noVsother 0.924472 1.843921 0.501
## d$HypoVsReal:d$Highvslow 5.362447 2.190214 2.448
## d$HypoVsReal:d$emotions_control_2 -0.285890 0.195472 -1.463
## d$noVsother:d$emotions_control_2 0.062487 0.206249 0.303
## d$Highvslow:d$emotions_control_2 -0.034849 0.240646 -0.145
## d$HypoVsReal:d$noVsother:d$emotions_control_2 -0.382649 0.412497 -0.928
## d$HypoVsReal:d$Highvslow:d$emotions_control_2 -0.844288 0.481292 -1.754
## Pr(>|t|)
## (Intercept) 5.71e-08 ***
## d$HypoVsReal 0.3171
## d$noVsother 0.1246
## d$Highvslow 0.9942
## d$emotions_control_2 0.8786
## d$HypoVsReal:d$noVsother 0.6164
## d$HypoVsReal:d$Highvslow 0.0149 *
## d$HypoVsReal:d$emotions_control_2 0.1445
## d$noVsother:d$emotions_control_2 0.7621
## d$Highvslow:d$emotions_control_2 0.8849
## d$HypoVsReal:d$noVsother:d$emotions_control_2 0.3543
## d$HypoVsReal:d$Highvslow:d$emotions_control_2 0.0803 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.817 on 338 degrees of freedom
## Multiple R-squared: 0.111, Adjusted R-squared: 0.08211
## F-statistic: 3.838 on 11 and 338 DF, p-value: 3.171e-05
#sad for recipient
m1 <- lm(d$pun ~ (d$HypoVsReal)*(d$noVsother + d$Highvslow)*(d$emotions_control_6))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal) * (d$noVsother + d$Highvslow) *
## (d$emotions_control_6))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6459 -2.0729 -0.8074 1.6616 8.4946
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 1.6243 0.4652 3.492
## d$HypoVsReal 0.6222 0.9303 0.669
## d$noVsother 2.3783 0.9504 2.503
## d$Highvslow -1.3394 1.1799 -1.135
## d$emotions_control_6 0.1769 0.1034 1.710
## d$HypoVsReal:d$noVsother 2.1810 1.9007 1.147
## d$HypoVsReal:d$Highvslow 2.8861 2.3598 1.223
## d$HypoVsReal:d$emotions_control_6 -0.2289 0.2069 -1.107
## d$noVsother:d$emotions_control_6 -0.1532 0.2121 -0.722
## d$Highvslow:d$emotions_control_6 0.2722 0.2615 1.041
## d$HypoVsReal:d$noVsother:d$emotions_control_6 -0.6694 0.4243 -1.578
## d$HypoVsReal:d$Highvslow:d$emotions_control_6 -0.2668 0.5230 -0.510
## Pr(>|t|)
## (Intercept) 0.000543 ***
## d$HypoVsReal 0.504052
## d$noVsother 0.012802 *
## d$Highvslow 0.257108
## d$emotions_control_6 0.088220 .
## d$HypoVsReal:d$noVsother 0.252011
## d$HypoVsReal:d$Highvslow 0.222173
## d$HypoVsReal:d$emotions_control_6 0.269213
## d$noVsother:d$emotions_control_6 0.470779
## d$Highvslow:d$emotions_control_6 0.298610
## d$HypoVsReal:d$noVsother:d$emotions_control_6 0.115553
## d$HypoVsReal:d$Highvslow:d$emotions_control_6 0.610295
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.809 on 338 degrees of freedom
## Multiple R-squared: 0.1164, Adjusted R-squared: 0.08766
## F-statistic: 4.048 on 11 and 338 DF, p-value: 1.391e-05
hypo vs real cost simple effects
# simple effect of hypo vs real for no cost
m1 <- lm(d$pun ~ (d$HypoVsReal *(d$nodum+ d$Highvslow)))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal * (d$nodum + d$Highvslow)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5090 0.2546 13.784 < 2e-16 ***
## d$HypoVsReal -0.7513 0.5091 -1.476 0.1410
## d$nodum -1.6935 0.3174 -5.335 1.74e-07 ***
## d$Highvslow -0.1642 0.3792 -0.433 0.6652
## d$HypoVsReal:d$nodum 0.6444 0.6349 1.015 0.3108
## d$HypoVsReal:d$Highvslow 1.7470 0.7584 2.303 0.0219 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
# simple effect of hypo vs real for high cost
m1 <- lm(d$pun ~ (d$HypoVsReal *(d$novslow + d$highdum)))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal * (d$novslow + d$highdum)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8976 0.2783 6.818 4.17e-11 ***
## d$HypoVsReal -0.9803 0.5567 -1.761 0.0791 .
## d$novslow 1.7756 0.3621 4.903 1.46e-06 ***
## d$highdum 0.7236 0.3321 2.179 0.0300 *
## d$HypoVsReal:d$novslow -1.5179 0.7243 -2.096 0.0368 *
## d$HypoVsReal:d$highdum 0.9880 0.6641 1.488 0.1377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
# simple effect of hypo vs real for low cost
m1 <- lm(d$pun ~ (d$HypoVsReal *(d$highvsno+ d$lowdum)))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$HypoVsReal * (d$highvsno + d$lowdum)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7333 0.2576 6.730 7.12e-11 ***
## d$HypoVsReal 0.7667 0.5151 1.488 0.13759
## d$highvsno 1.7840 0.4125 4.325 2.00e-05 ***
## d$lowdum 0.8836 0.3218 2.746 0.00636 **
## d$HypoVsReal:d$highvsno 0.5743 0.8250 0.696 0.48688
## d$HypoVsReal:d$lowdum -1.8051 0.6437 -2.804 0.00533 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
cost simple effects
## no cost vs other - simple effect
# hypo dummy
m1 <- lm(d$pun ~ (d$Hypodum *(d$noVsother + d$Highvslow)))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$Hypodum * (d$noVsother + d$Highvslow)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5408 0.2232 11.385 < 2e-16 ***
## d$Hypodum -0.3217 0.3045 -1.056 0.2916
## d$noVsother 2.0157 0.4763 4.232 2.98e-05 ***
## d$Highvslow -1.0378 0.5433 -1.910 0.0569 .
## d$Hypodum:d$noVsother -0.6444 0.6349 -1.015 0.3108
## d$Hypodum:d$Highvslow 1.7470 0.7584 2.303 0.0219 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
#real dummy
m1 <- lm(d$pun ~ (d$Realdum *(d$noVsother + d$Highvslow)))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$Realdum * (d$noVsother + d$Highvslow)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2191 0.2072 10.712 <2e-16 ***
## d$Realdum 0.3217 0.3045 1.056 0.2916
## d$noVsother 1.3713 0.4197 3.267 0.0012 **
## d$Highvslow 0.7093 0.5292 1.340 0.1811
## d$Realdum:d$noVsother 0.6444 0.6349 1.015 0.3108
## d$Realdum:d$Highvslow -1.7470 0.7584 -2.303 0.0219 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
#high cost vs other
# hypo dummy
m1 <- lm(d$pun ~ (d$Hypodum)*(d$novslow + d$highVsother))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$Hypodum) * (d$novslow + d$highVsother))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5408 0.2232 11.385 < 2e-16 ***
## d$Hypodum -0.3217 0.3045 -1.056 0.2916
## d$novslow 2.5346 0.5346 4.741 3.11e-06 ***
## d$highVsother -0.2296 0.4836 -0.475 0.6353
## d$Hypodum:d$novslow -1.5179 0.7243 -2.096 0.0368 *
## d$Hypodum:d$highVsother -0.9880 0.6641 -1.488 0.1377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
#real dummy
m1 <- lm(d$pun ~ (d$Realdum)*(d$novslow + d$highVsother))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$Realdum) * (d$novslow + d$highVsother))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2191 0.2072 10.712 < 2e-16 ***
## d$Realdum 0.3217 0.3045 1.056 0.29155
## d$novslow 1.0167 0.4887 2.080 0.03823 *
## d$highVsother -1.2176 0.4551 -2.675 0.00782 **
## d$Realdum:d$novslow 1.5179 0.7243 2.096 0.03683 *
## d$Realdum:d$highVsother 0.9880 0.6641 1.488 0.13772
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
## low cost vs other
# hypo dummy
m1 <- lm(d$pun ~ (d$Hypodum)*(d$highvsno + d$lowVsother))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$Hypodum) * (d$highvsno + d$lowVsother))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5408 0.2232 11.385 < 2e-16 ***
## d$Hypodum -0.4367 0.3093 -1.412 0.158899
## d$highvsno 1.4969 0.5617 2.665 0.008069 **
## d$lowVsother -1.7862 0.4600 -3.883 0.000124 ***
## d$Hypodum:d$highvsno 0.5743 0.8250 0.696 0.486879
## d$Hypodum:d$lowVsother 1.8051 0.6437 2.804 0.005328 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
#real dummy
m1 <- lm(d$pun ~ (d$Realdum)*(d$highvsno + d$lowVsother))
summary(m1)
##
## Call:
## lm(formula = d$pun ~ (d$Realdum) * (d$highvsno + d$lowVsother))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.885 -2.117 -1.133 1.641 8.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.10407 0.21419 9.823 < 2e-16 ***
## d$Realdum 0.43672 0.30932 1.412 0.158899
## d$highvsno 2.07111 0.60426 3.428 0.000683 ***
## d$lowVsother 0.01889 0.45026 0.042 0.966562
## d$Realdum:d$highvsno -0.57425 0.82504 -0.696 0.486879
## d$Realdum:d$lowVsother -1.80507 0.64366 -2.804 0.005328 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.821 on 344 degrees of freedom
## Multiple R-squared: 0.09249, Adjusted R-squared: 0.0793
## F-statistic: 7.012 on 5 and 344 DF, p-value: 2.951e-06
descriptives for punishment over 1 probability
describeBy(d$punplus, group = d$con)
##
## Descriptive statistics by group
## group: high hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 0.53 0.5 1 0.54 0 0 1 1 -0.12 -2.03 0.07
## ------------------------------------------------------------
## group: high real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 0.44 0.5 0 0.43 0 0 1 1 0.22 -1.99 0.07
## ------------------------------------------------------------
## group: low hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 0.4 0.49 0 0.38 0 0 1 1 0.4 -1.87 0.06
## ------------------------------------------------------------
## group: low real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 0.57 0.5 1 0.58 0 0 1 1 -0.26 -1.96 0.06
## ------------------------------------------------------------
## group: no hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 0.73 0.45 1 0.79 0 0 1 1 -1.01 -1 0.06
## ------------------------------------------------------------
## group: no real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 0.72 0.45 1 0.77 0 0 1 1 -0.96 -1.09 0.05
probability models of punishing at all
logit.cost <- glm(d$punplus ~ (HypoVsReal)*(noVsother + Highvslow), data = d, family=binomial)
summary(logit.cost)
##
## Call:
## glm(formula = d$punplus ~ (HypoVsReal) * (noVsother + Highvslow),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.620 -1.084 0.792 1.066 1.354
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.28421 0.11281 2.519 0.0118 *
## HypoVsReal 0.09131 0.22562 0.405 0.6857
## noVsother 1.03093 0.24364 4.231 2.32e-05 ***
## Highvslow -0.01833 0.27123 -0.068 0.9461
## HypoVsReal:noVsother -0.21806 0.48728 -0.447 0.6545
## HypoVsReal:Highvslow 1.01947 0.54246 1.879 0.0602 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 478.04 on 349 degrees of freedom
## Residual deviance: 454.33 on 344 degrees of freedom
## AIC: 466.33
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.cost))
## (Intercept) HypoVsReal noVsother
## 1.3287093 1.0956035 2.8036743
## Highvslow HypoVsReal:noVsother HypoVsReal:Highvslow
## 0.9818370 0.8040781 2.7717391
logit.cost <- glm(d$punplus ~ (HypoVsReal)*(novslow + highVsother), data = d, family=binomial)
summary(logit.cost)
##
## Call:
## glm(formula = d$punplus ~ (HypoVsReal) * (novslow + highVsother),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.620 -1.084 0.792 1.066 1.354
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.28421 0.11281 2.519 0.01176 *
## HypoVsReal 0.09131 0.22562 0.405 0.68571
## novslow 1.04010 0.27441 3.790 0.00015 ***
## highVsother -0.50172 0.24096 -2.082 0.03732 *
## HypoVsReal:novslow -0.72780 0.54882 -1.326 0.18480
## HypoVsReal:highVsother -0.65558 0.48191 -1.360 0.17371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 478.04 on 349 degrees of freedom
## Residual deviance: 454.33 on 344 degrees of freedom
## AIC: 466.33
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.cost))
## (Intercept) HypoVsReal novslow
## 1.3287093 1.0956035 2.8294880
## highVsother HypoVsReal:novslow HypoVsReal:highVsother
## 0.6054896 0.4829721 0.5191425
logit.cost <- glm(d$punplus ~ (HypoVsReal)*(novslow + highVsother), data = d, family=binomial)
summary(logit.cost)
##
## Call:
## glm(formula = d$punplus ~ (HypoVsReal) * (novslow + highVsother),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.620 -1.084 0.792 1.066 1.354
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.28421 0.11281 2.519 0.01176 *
## HypoVsReal 0.09131 0.22562 0.405 0.68571
## novslow 1.04010 0.27441 3.790 0.00015 ***
## highVsother -0.50172 0.24096 -2.082 0.03732 *
## HypoVsReal:novslow -0.72780 0.54882 -1.326 0.18480
## HypoVsReal:highVsother -0.65558 0.48191 -1.360 0.17371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 478.04 on 349 degrees of freedom
## Residual deviance: 454.33 on 344 degrees of freedom
## AIC: 466.33
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.cost))
## (Intercept) HypoVsReal novslow
## 1.3287093 1.0956035 2.8294880
## highVsother HypoVsReal:novslow HypoVsReal:highVsother
## 0.6054896 0.4829721 0.5191425
Models - probability of punish
logit.1 <- glm(punplus ~ (HypoVsReal)*(noVsother + Highvslow), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = punplus ~ (HypoVsReal) * (noVsother + Highvslow),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.620 -1.084 0.792 1.066 1.354
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.28421 0.11281 2.519 0.0118 *
## HypoVsReal 0.09131 0.22562 0.405 0.6857
## noVsother 1.03093 0.24364 4.231 2.32e-05 ***
## Highvslow -0.01833 0.27123 -0.068 0.9461
## HypoVsReal:noVsother -0.21806 0.48728 -0.447 0.6545
## HypoVsReal:Highvslow 1.01947 0.54246 1.879 0.0602 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 478.04 on 349 degrees of freedom
## Residual deviance: 454.33 on 344 degrees of freedom
## AIC: 466.33
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal noVsother
## 1.3287093 1.0956035 2.8036743
## Highvslow HypoVsReal:noVsother HypoVsReal:Highvslow
## 0.9818370 0.8040781 2.7717391
logit.1 <- glm(punplus ~ (HypoVsReal)*(novslow + highVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = punplus ~ (HypoVsReal) * (novslow + highVsother),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.620 -1.084 0.792 1.066 1.354
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.28421 0.11281 2.519 0.01176 *
## HypoVsReal 0.09131 0.22562 0.405 0.68571
## novslow 1.04010 0.27441 3.790 0.00015 ***
## highVsother -0.50172 0.24096 -2.082 0.03732 *
## HypoVsReal:novslow -0.72780 0.54882 -1.326 0.18480
## HypoVsReal:highVsother -0.65558 0.48191 -1.360 0.17371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 478.04 on 349 degrees of freedom
## Residual deviance: 454.33 on 344 degrees of freedom
## AIC: 466.33
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal novslow
## 1.3287093 1.0956035 2.8294880
## highVsother HypoVsReal:novslow HypoVsReal:highVsother
## 0.6054896 0.4829721 0.5191425
logit.1 <- glm(punplus ~ (HypoVsReal)*(highvsno + lowVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = punplus ~ (HypoVsReal) * (highvsno + lowVsother),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.620 -1.084 0.792 1.066 1.354
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.24529 0.11394 2.153 0.031330 *
## HypoVsReal 0.01346 0.22787 0.059 0.952880
## highvsno 1.13853 0.30940 3.680 0.000233 ***
## lowVsother -0.47083 0.23443 -2.008 0.044595 *
## HypoVsReal:highvsno 0.52520 0.61881 0.849 0.396032
## HypoVsReal:lowVsother 0.99040 0.46885 2.112 0.034653 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 478.04 on 349 degrees of freedom
## Residual deviance: 454.33 on 344 degrees of freedom
## AIC: 466.33
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal highvsno
## 1.2779891 1.0135561 3.1221640
## lowVsother HypoVsReal:highvsno HypoVsReal:lowVsother
## 0.6244821 1.6907964 2.6923008
Models - probability of die odd die roll
logit.1 <- glm(die ~ (HypoVsReal)*(noVsother + Highvslow), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (noVsother + Highvslow), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1028 0.1094 -0.940 0.3474
## HypoVsReal 0.2534 0.2188 1.158 0.2468
## noVsother 0.1208 0.2272 0.531 0.5951
## Highvslow 0.6226 0.2735 2.277 0.0228 *
## HypoVsReal:noVsother 0.2484 0.4545 0.547 0.5847
## HypoVsReal:Highvslow 0.3317 0.5469 0.606 0.5442
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal noVsother
## 0.9022982 1.2884237 1.1283685
## Highvslow HypoVsReal:noVsother HypoVsReal:Highvslow
## 1.8637822 1.2819603 1.3933333
logit.1 <- glm(die ~ (HypoVsReal)*(novslow + highVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (novslow + highVsother), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.10281 0.10940 -0.940 0.3474
## HypoVsReal 0.25342 0.21881 1.158 0.2468
## novslow -0.19053 0.25836 -0.737 0.4608
## highVsother -0.52734 0.24012 -2.196 0.0281 *
## HypoVsReal:novslow 0.08254 0.51672 0.160 0.8731
## HypoVsReal:highVsother -0.37297 0.48025 -0.777 0.4374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal novslow
## 0.9022982 1.2884237 0.8265200
## highVsother HypoVsReal:novslow HypoVsReal:highVsother
## 0.5901714 1.0860431 0.6886863
logit.1 <- glm(die ~ (HypoVsReal)*(d$highvsno + d$lowVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (d$highvsno + d$lowVsother),
## family = binomial, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1241 0.1113 -1.115 0.2647
## HypoVsReal 0.2108 0.2226 0.947 0.3435
## d$highvsno 0.4960 0.2973 1.668 0.0953 .
## d$lowVsother 0.4385 0.2307 1.901 0.0573 .
## HypoVsReal:d$highvsno 0.5421 0.5946 0.912 0.3620
## HypoVsReal:d$lowVsother 0.1885 0.4614 0.409 0.6829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal d$highvsno
## 0.8832767 1.2346734 1.6421336
## d$lowVsother HypoVsReal:d$highvsno HypoVsReal:d$lowVsother
## 1.5504254 1.7195785 1.2074355
descriptives of die roll
describeBy(d$die, group = d$cost_con)
##
## Descriptive statistics by group
## group: high
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 103 0.39 0.49 0 0.36 0 0 1 1 0.45 -1.81 0.05
## ------------------------------------------------------------
## group: low
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 120 0.54 0.5 1 0.55 0 0 1 1 -0.17 -1.99 0.05
## ------------------------------------------------------------
## group: no
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 127 0.5 0.5 1 0.5 0 0 1 1 -0.02 -2.02 0.04
describeBy(d$die, group = d$real_con)
##
## Descriptive statistics by group
## group: hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 161 0.45 0.5 0 0.43 0 0 1 1 0.21 -1.97 0.04
## ------------------------------------------------------------
## group: real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 189 0.51 0.5 1 0.52 0 0 1 1 -0.05 -2.01 0.04
describeBy(d$die, group = d$con)
##
## Descriptive statistics by group
## group: high hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 49 0.39 0.49 0 0.37 0 0 1 1 0.45 -1.84 0.07
## ------------------------------------------------------------
## group: high real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 0.39 0.49 0 0.36 0 0 1 1 0.44 -1.84 0.07
## ------------------------------------------------------------
## group: low hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 0.5 0.5 0.5 0.5 0.74 0 1 1 0 -2.03 0.07
## ------------------------------------------------------------
## group: low real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 60 0.58 0.5 1 0.6 0 0 1 1 -0.33 -1.92 0.06
## ------------------------------------------------------------
## group: no hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 52 0.44 0.5 0 0.43 0 0 1 1 0.23 -1.99 0.07
## ------------------------------------------------------------
## group: no real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 75 0.55 0.5 1 0.56 0 0 1 1 -0.18 -1.99 0.06
condtion frequencies
# condition frequencies before and after removing non punishers
table(df1$con)
##
## high hypo high real low hypo low real no hypo no real
## 26 24 24 34 38 54
table(d$con)
##
## high hypo high real low hypo low real no hypo no real
## 49 54 60 60 52 75
Excluding nonpunishers Models - probability of die odd die roll
# hypo vs real by no cost vs. other costs/high vs low cost
logit.1 <- glm(die ~ (HypoVsReal)*(noVsother + Highvslow), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (noVsother + Highvslow), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1265 0.1515 0.835 0.4036
## HypoVsReal 0.5205 0.3031 1.718 0.0859 .
## noVsother -0.1714 0.2948 -0.581 0.5610
## Highvslow 0.8446 0.3995 2.114 0.0345 *
## HypoVsReal:noVsother 0.5384 0.5897 0.913 0.3612
## HypoVsReal:Highvslow 0.3959 0.7991 0.495 0.6203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal noVsother
## 1.134901 1.682884 0.842474
## Highvslow HypoVsReal:noVsother HypoVsReal:Highvslow
## 2.326989 1.713230 1.485714
# hypo vs real by no cost vs. low cost/high vs other cost
logit.1 <- glm(die ~ (HypoVsReal)*(novslow + highVsother), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (novslow + highVsother), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1265 0.1515 0.835 0.4036
## HypoVsReal 0.5205 0.3031 1.718 0.0859 .
## novslow -0.5937 0.3540 -1.677 0.0935 .
## highVsother -0.5477 0.3357 -1.632 0.1027
## HypoVsReal:novslow 0.3404 0.7079 0.481 0.6306
## HypoVsReal:highVsother -0.5661 0.6713 -0.843 0.3991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal novslow
## 1.1349011 1.6828837 0.5522801
## highVsother HypoVsReal:novslow HypoVsReal:highVsother
## 0.5782638 1.4055556 0.5677285
# hypo vs real by no cost vs. high cost/other vs low cost
logit.1 <- glm(die ~ (HypoVsReal)*(highvsno + lowVsother), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (highvsno + lowVsother), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.10591 0.15567 0.680 0.4963
## HypoVsReal 0.47924 0.31133 1.539 0.1237
## highvsno 0.31278 0.39421 0.793 0.4275
## lowVsother 0.75009 0.33649 2.229 0.0258 *
## HypoVsReal:highvsno 0.86014 0.78842 1.091 0.2753
## HypoVsReal:lowVsother 0.08964 0.67299 0.133 0.8940
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal highvsno
## 1.111723 1.614846 1.367219
## lowVsother HypoVsReal:highvsno HypoVsReal:lowVsother
## 2.117189 2.363482 1.093775
die roll descriptives after excluding nonpunishers
describeBy(df1$die, group = df1$cost_con)
##
## Descriptive statistics by group
## group: high
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 50 0.44 0.5 0 0.42 0 0 1 1 0.23 -1.98 0.07
## ------------------------------------------------------------
## group: low
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 58 0.66 0.48 1 0.69 0 0 1 1 -0.64 -1.62 0.06
## ------------------------------------------------------------
## group: no
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 92 0.52 0.5 1 0.53 0 0 1 1 -0.09 -2.01 0.05
describeBy(df1$die, group = df1$real_con)
##
## Descriptive statistics by group
## group: hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 88 0.45 0.5 0 0.44 0 0 1 1 0.18 -1.99 0.05
## ------------------------------------------------------------
## group: real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 112 0.61 0.49 1 0.63 0 0 1 1 -0.43 -1.83 0.05
describeBy(df1$die, group = df1$con)
##
## Descriptive statistics by group
## group: high hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 0.42 0.5 0 0.41 0 0 1 1 0.29 -1.99 0.1
## ------------------------------------------------------------
## group: high real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 24 0.46 0.51 0 0.45 0 0 1 1 0.16 -2.06 0.1
## ------------------------------------------------------------
## group: low hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 24 0.58 0.5 1 0.6 0 0 1 1 -0.32 -1.98 0.1
## ------------------------------------------------------------
## group: low real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 0.71 0.46 1 0.75 0 0 1 1 -0.86 -1.29 0.08
## ------------------------------------------------------------
## group: no hypo
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 38 0.39 0.5 0 0.38 0 0 1 1 0.41 -1.88 0.08
## ------------------------------------------------------------
## group: no real
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 0.61 0.49 1 0.64 0 0 1 1 -0.44 -1.84 0.07
prob simple effects for cost
## high vs other
#real dummy
logit.1 <- glm(die ~ (Realdum)*(novslow + highVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Realdum) * (novslow + highVsother), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.02390 0.14918 0.160 0.8727
## Realdum -0.25342 0.21881 -1.158 0.2468
## novslow -0.14926 0.34982 -0.427 0.6696
## highVsother -0.71383 0.32942 -2.167 0.0302 *
## Realdum:novslow -0.08254 0.51672 -0.160 0.8731
## Realdum:highVsother 0.37297 0.48025 0.777 0.4374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Realdum novslow highVsother
## 1.0241874 0.7761422 0.8613445 0.4897663
## Realdum:novslow Realdum:highVsother
## 0.9207738 1.4520399
#hypo dummy
logit.1 <- glm(die ~ (Hypodum)*(novslow + highVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Hypodum) * (novslow + highVsother), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.22952 0.16007 -1.434 0.152
## Hypodum 0.25342 0.21881 1.158 0.247
## novslow -0.23180 0.38030 -0.610 0.542
## highVsother -0.34086 0.34946 -0.975 0.329
## Hypodum:novslow 0.08254 0.51672 0.160 0.873
## Hypodum:highVsother -0.37297 0.48025 -0.777 0.437
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Hypodum novslow highVsother
## 0.7949151 1.2884237 0.7931034 0.7111602
## Hypodum:novslow Hypodum:highVsother
## 1.0860431 0.6886863
# low vs other
#real dummy
logit.1 <- glm(die ~ (Realdum)*(highvsno + lowVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Realdum) * (highvsno + lowVsother), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.01871 0.15464 -0.121 0.9037
## Realdum -0.21081 0.22256 -0.947 0.3435
## highvsno 0.76704 0.43553 1.761 0.0782 .
## lowVsother 0.53278 0.32439 1.642 0.1005
## Realdum:highvsno -0.54208 0.59465 -0.912 0.3620
## Realdum:lowVsother -0.18850 0.46139 -0.409 0.6829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Realdum highvsno lowVsother
## 0.9814605 0.8099308 2.1533742 1.7036597
## Realdum:highvsno Realdum:lowVsother
## 0.5815379 0.8282016
#hypo dummy
logit.1 <- glm(die ~ (Hypodum)*(novslow + highVsother), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Hypodum) * (novslow + highVsother), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.22952 0.16007 -1.434 0.152
## Hypodum 0.25342 0.21881 1.158 0.247
## novslow -0.23180 0.38030 -0.610 0.542
## highVsother -0.34086 0.34946 -0.975 0.329
## Hypodum:novslow 0.08254 0.51672 0.160 0.873
## Hypodum:highVsother -0.37297 0.48025 -0.777 0.437
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Hypodum novslow highVsother
## 0.7949151 1.2884237 0.7931034 0.7111602
## Hypodum:novslow Hypodum:highVsother
## 1.0860431 0.6886863
## no vs other
#real dummy
logit.1 <- glm(die ~ (Realdum)*(noVsother + Highvslow), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Realdum) * (noVsother + Highvslow), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0239 0.1492 0.160 0.8727
## Realdum -0.2534 0.2188 -1.158 0.2468
## noVsother 0.2450 0.3007 0.815 0.4153
## Highvslow 0.7885 0.3827 2.060 0.0394 *
## Realdum:noVsother -0.2484 0.4545 -0.547 0.5847
## Realdum:Highvslow -0.3317 0.5469 -0.606 0.5442
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Realdum noVsother Highvslow
## 1.0241874 0.7761422 1.2775804 2.2000000
## Realdum:noVsother Realdum:Highvslow
## 0.7800554 0.7177033
#hypo dummy
logit.1 <- glm(die ~ (Hypodum)*(noVsother + Highvslow), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Hypodum) * (noVsother + Highvslow), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.229520 0.160067 -1.434 0.152
## Hypodum 0.253420 0.218807 1.158 0.247
## noVsother -0.003422 0.340762 -0.010 0.992
## Highvslow 0.456758 0.390681 1.169 0.242
## Hypodum:noVsother 0.248390 0.454471 0.547 0.585
## Hypodum:Highvslow 0.331699 0.546923 0.606 0.544
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Hypodum noVsother Highvslow
## 0.7949151 1.2884237 0.9965834 1.5789474
## Hypodum:noVsother Hypodum:Highvslow
## 1.2819603 1.3933333
Excluding nonpunishers - prob simple effects for cost
## high vs other
logit.1 <- glm(die ~ (Realdum)*(novslow + highVsother), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Realdum) * (novslow + highVsother), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.3868 0.2075 1.864 0.0623 .
## Realdum -0.5205 0.3031 -1.718 0.0859 .
## novslow -0.4235 0.4686 -0.904 0.3661
## highVsother -0.8308 0.4719 -1.760 0.0783 .
## Realdum:novslow -0.3404 0.7079 -0.481 0.6306
## Realdum:highVsother 0.5661 0.6713 0.843 0.3991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Realdum novslow highVsother
## 1.4722619 0.5942181 0.6547619 0.4357089
## Realdum:novslow Realdum:highVsother
## 0.7114625 1.7614053
logit.1 <- glm(die ~ (Hypodum)*(novslow + highVsother), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Hypodum) * (novslow + highVsother), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1337 0.2209 -0.605 0.5450
## Hypodum 0.5205 0.3031 1.718 0.0859 .
## novslow -0.7639 0.5306 -1.440 0.1500
## highVsother -0.2647 0.4775 -0.554 0.5794
## Hypodum:novslow 0.3404 0.7079 0.481 0.6306
## Hypodum:highVsother -0.5661 0.6713 -0.843 0.3991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Hypodum novslow highVsother
## 0.8748447 1.6828837 0.4658385 0.7674599
## Hypodum:novslow Hypodum:highVsother
## 1.4055556 0.5677285
# low vs other
logit.1 <- glm(die ~ (Realdum)*(highvsno + lowVsother), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Realdum) * (highvsno + lowVsother), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.34553 0.21940 1.575 0.1153
## Realdum -0.47924 0.31133 -1.539 0.1237
## highvsno 0.74285 0.59488 1.249 0.2118
## lowVsother 0.79491 0.46320 1.716 0.0861 .
## Realdum:highvsno -0.86014 0.78842 -1.091 0.2753
## Realdum:lowVsother -0.08964 0.67299 -0.133 0.8940
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Realdum highvsno lowVsother
## 1.4127394 0.6192541 2.1019113 2.2142354
## Realdum:highvsno Realdum:lowVsother
## 0.4231045 0.9142644
logit.1 <- glm(die ~ (Hypodum)*(novslow + highVsother), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Hypodum) * (novslow + highVsother), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1337 0.2209 -0.605 0.5450
## Hypodum 0.5205 0.3031 1.718 0.0859 .
## novslow -0.7639 0.5306 -1.440 0.1500
## highVsother -0.2647 0.4775 -0.554 0.5794
## Hypodum:novslow 0.3404 0.7079 0.481 0.6306
## Hypodum:highVsother -0.5661 0.6713 -0.843 0.3991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Hypodum novslow highVsother
## 0.8748447 1.6828837 0.4658385 0.7674599
## Hypodum:novslow Hypodum:highVsother
## 1.4055556 0.5677285
## no vs other
logit.1 <- glm(die ~ (Realdum)*(noVsother + Highvslow), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Realdum) * (noVsother + Highvslow), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.38680 0.20748 1.864 0.0623 .
## Realdum -0.52051 0.30305 -1.718 0.0859 .
## noVsother 0.09778 0.39408 0.248 0.8040
## Highvslow 1.04252 0.55633 1.874 0.0609 .
## Realdum:noVsother -0.53838 0.58965 -0.913 0.3612
## Realdum:Highvslow -0.39590 0.79906 -0.495 0.6203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Realdum noVsother Highvslow
## 1.4722619 0.5942181 1.1027177 2.8363636
## Realdum:noVsother Realdum:Highvslow
## 0.5836928 0.6730769
logit.1 <- glm(die ~ (Hypodum)*(noVsother + Highvslow), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (Hypodum) * (noVsother + Highvslow), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1337 0.2209 -0.605 0.5450
## Hypodum 0.5205 0.3031 1.718 0.0859 .
## noVsother -0.4406 0.4386 -1.004 0.3151
## Highvslow 0.6466 0.5736 1.127 0.2596
## Hypodum:noVsother 0.5384 0.5897 0.913 0.3612
## Hypodum:Highvslow 0.3959 0.7991 0.495 0.6203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) Hypodum noVsother Highvslow
## 0.8748447 1.6828837 0.6436484 1.9090909
## Hypodum:noVsother Hypodum:Highvslow
## 1.7132300 1.4857143
prob simple effects for hypo vs real
#hypo vs. no cost simple effect
logit.1 <- glm(die ~ (HypoVsReal)*(nodum + Highvslow), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (nodum + Highvslow), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.0223 0.1815 -0.123 0.9022
## HypoVsReal 0.4190 0.3630 1.154 0.2484
## nodum -0.1208 0.2272 -0.531 0.5951
## Highvslow 0.6226 0.2735 2.277 0.0228 *
## HypoVsReal:nodum -0.2484 0.4545 -0.547 0.5847
## HypoVsReal:Highvslow 0.3317 0.5469 0.606 0.5442
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal nodum
## 0.9779517 1.5204604 0.8862353
## Highvslow HypoVsReal:nodum HypoVsReal:Highvslow
## 1.8637822 0.7800554 1.3933333
#hypo vs. high cost simple effect
logit.1 <- glm(die ~ (HypoVsReal)*(novslow + highdum), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (novslow + highdum), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.454372 0.202415 -2.245 0.0248 *
## HypoVsReal 0.004773 0.404830 0.012 0.9906
## novslow -0.190531 0.258361 -0.737 0.4608
## highdum 0.527342 0.240124 2.196 0.0281 *
## HypoVsReal:novslow 0.082541 0.516722 0.160 0.8731
## HypoVsReal:highdum 0.372969 0.480247 0.777 0.4374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal novslow highdum
## 0.6348467 1.0047847 0.8265200 1.6944231
## HypoVsReal:novslow HypoVsReal:highdum
## 1.0860431 1.4520399
#hypo vs. low cost simple effect
logit.1 <- glm(die ~ (HypoVsReal)*(d$highvsno + d$lowdum), data = d, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (d$highvsno + d$lowdum), family = binomial,
## data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3232 -1.1774 -0.9906 1.1774 1.3765
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1682 0.1839 0.915 0.3602
## HypoVsReal 0.3365 0.3677 0.915 0.3602
## d$highvsno 0.4960 0.2973 1.668 0.0953 .
## d$lowdum -0.4385 0.2307 -1.901 0.0573 .
## HypoVsReal:d$highvsno 0.5421 0.5946 0.912 0.3620
## HypoVsReal:d$lowdum -0.1885 0.4614 -0.409 0.6829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 484.79 on 349 degrees of freedom
## Residual deviance: 477.00 on 344 degrees of freedom
## AIC: 489
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal d$highvsno
## 1.1832160 1.4000000 1.6421336
## d$lowdum HypoVsReal:d$highvsno HypoVsReal:d$lowdum
## 0.6449843 1.7195785 0.8282016
Excluding non punishers prob simple effects for hypo vs real
#hypo vs. no cost simple effect
logit.1 <- glm(die ~ (HypoVsReal)*(nodum + Highvslow), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (nodum + Highvslow), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.01227 0.21683 0.057 0.9549
## HypoVsReal 0.87943 0.43367 2.028 0.0426 *
## nodum 0.17141 0.29483 0.581 0.5610
## Highvslow 0.84457 0.39953 2.114 0.0345 *
## HypoVsReal:nodum -0.53838 0.58965 -0.913 0.3612
## HypoVsReal:Highvslow 0.39590 0.79906 0.495 0.6203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal nodum
## 1.0123461 2.4095238 1.1869802
## Highvslow HypoVsReal:nodum HypoVsReal:Highvslow
## 2.3269886 0.5836928 1.4857143
#hypo vs. high cost simple effect
logit.1 <- glm(die ~ (HypoVsReal)*(novslow + highdum), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (novslow + highdum), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.2386 0.2852 -0.837 0.4028
## HypoVsReal 0.1431 0.5704 0.251 0.8019
## novslow -0.5937 0.3540 -1.677 0.0935 .
## highdum 0.5477 0.3357 1.632 0.1027
## HypoVsReal:novslow 0.3404 0.7079 0.481 0.6306
## HypoVsReal:highdum 0.5661 0.6713 0.843 0.3991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal novslow highdum
## 0.7877264 1.1538462 0.5522801 1.7293144
## HypoVsReal:novslow HypoVsReal:highdum
## 1.4055556 1.7614053
#hypo vs. low cost simple effect
logit.1 <- glm(die ~ (HypoVsReal)*(highvsno + lowdum), data = df1, family=binomial)
summary(logit.1)
##
## Call:
## glm(formula = die ~ (HypoVsReal) * (highvsno + lowdum), family = binomial,
## data = df1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5645 -1.1073 0.8346 1.0383 1.3635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.60597 0.27977 2.166 0.0303 *
## HypoVsReal 0.53900 0.55955 0.963 0.3354
## highvsno 0.31278 0.39421 0.793 0.4275
## lowdum -0.75009 0.33649 -2.229 0.0258 *
## HypoVsReal:highvsno 0.86014 0.78842 1.091 0.2753
## HypoVsReal:lowdum -0.08964 0.67299 -0.133 0.8940
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 275.98 on 199 degrees of freedom
## Residual deviance: 265.48 on 194 degrees of freedom
## AIC: 277.48
##
## Number of Fisher Scoring iterations: 4
exp(coef(logit.1))
## (Intercept) HypoVsReal highvsno lowdum
## 1.8330303 1.7142857 1.3672193 0.4723243
## HypoVsReal:highvsno HypoVsReal:lowdum
## 2.3634824 0.9142644
graphs - probability of punish
group by real or hypo
int.plot <- ggplot(d[!is.na(d$real_con),], aes(x = real_con, y = punplus, fill = d$cost_con)) +
ggtitle("odds punishment happens") +
geom_bar(stat = "summary", fun = "mean" , position = position_dodge(.9))+
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", position = position_dodge(.9),fun.args = list(mult = 1), width = .2)
int.plot + theme(
# Remove panel border
panel.border = element_blank(),
# Remove panel grid lines
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
# Remove panel background
panel.background = element_blank(),
# Add axis line
axis.line = element_line(colour = "grey")
) + xlab("Condition" ) + ylab("Probability of punishing")+ scale_fill_manual("Punishment cost", values = c("red","gold2", "lightgreen")) + scale_x_discrete(labels = c("Hypotheical", "Real") )
## Warning: Use of `d$cost_con` is discouraged.
## ℹ Use `cost_con` instead.
## Use of `d$cost_con` is discouraged.
## ℹ Use `cost_con` instead.

prob of odd die roll group by real or hypo exclude nonpunishers
int.plot <- ggplot(df1[!is.na(df1$real_con),], aes(x = df1$real_con, y = df1$die, fill = df1$cost_con)) +
ggtitle("die role outcome - odd = punishment happens") +
geom_bar(stat = "summary", fun = "mean" , position = position_dodge(.9))+
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", position = position_dodge(.9),fun.args = list(mult = 1), width = .2)
int.plot + theme(
# Remove panel border
panel.border = element_blank(),
# Remove panel grid lines
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
# Remove panel background
panel.background = element_blank(),
# Add axis line
axis.line = element_line(colour = "grey")
) + xlab("Condition" ) + ylab("Probability of rolling an odd number")+ scale_fill_manual("Punishment cost", values = c("red","gold2", "lightgreen")) + scale_x_discrete(labels = c("Hypotheical", "Real") )

odd roll prob groups by cost
int.plot <- ggplot(d[!is.na(d$real_con),], aes(x = cost_con, y = die, fill = d$real_con)) +
ggtitle("die role outcome - odd = punishment happens") +
geom_bar(stat = "summary", fun = "mean" , position = position_dodge(.9))+
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", position = position_dodge(.9),fun.args = list(mult = 1), width = .2)
int.plot + theme(
# Remove panel border
panel.border = element_blank(),
# Remove panel grid lines
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
# Remove panel background
panel.background = element_blank(),
# Add axis line
axis.line = element_line(colour = "grey")
) + xlab("Condition" ) + ylab("Probability of rolling an odd number")+ scale_fill_manual("Punishment cost", values = c("lightpink", "powderblue")) + scale_x_discrete(labels = c("High", "low","no") )
## Warning: Use of `d$real_con` is discouraged.
## ℹ Use `real_con` instead.
## Use of `d$real_con` is discouraged.
## ℹ Use `real_con` instead.

odd roll prob group by cost excluding nonpunishers
int.plot <- ggplot(df1[!is.na(df1$real_con),], aes(x = df1$cost_con, y = df1$die, fill = df1$real_con)) +
ggtitle("die role outcome - odd = punishment happens") +
geom_bar(stat = "summary", fun = "mean" , position = position_dodge(.9))+
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", position = position_dodge(.9),fun.args = list(mult = 1), width = .2)
int.plot + theme(
# Remove panel border
panel.border = element_blank(),
# Remove panel grid lines
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
# Remove panel background
panel.background = element_blank(),
# Add axis line
axis.line = element_line(colour = "grey")
) + xlab("Condition" ) + ylab("Probability of rolling an odd number")+ scale_fill_manual("Punishment cost", values = c("lightpink", "powderblue")) + scale_x_discrete(labels = c("High", "low","no") )
