knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidytext)
## Warning: package 'tidytext' was built under R version 4.3.2
library(correlationfunnel)
## Warning: package 'correlationfunnel' was built under R version 4.3.2
## ══ correlationfunnel Tip #3 ════════════════════════════════════════════════════
## Using `binarize()` with data containing many columns or many rows can increase dimensionality substantially.
## Try subsetting your data column-wise or row-wise to avoid creating too many columns.
## You can always make a big problem smaller by sampling. :)
Goal: to predict total weeks on best sellers list (total_weeks) Click here for the data.
nyt <- readr::read_tsv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-05-10/nyt_titles.tsv')
## Rows: 7431 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (2): title, author
## dbl (5): id, year, total_weeks, debut_rank, best_rank
## date (1): first_week
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(nyt)
| Name | nyt |
| Number of rows | 7431 |
| Number of columns | 8 |
| _______________________ | |
| Column type frequency: | |
| character | 2 |
| Date | 1 |
| numeric | 5 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| title | 0 | 1 | 1 | 74 | 0 | 7172 | 0 |
| author | 4 | 1 | 4 | 73 | 0 | 2205 | 0 |
Variable type: Date
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| first_week | 0 | 1 | 1931-10-12 | 2020-12-06 | 2000-06-25 | 3348 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| id | 0 | 1 | 3715.00 | 2145.29 | 0 | 1857.5 | 3715 | 5572.5 | 7430 | ▇▇▇▇▇ |
| year | 0 | 1 | 1989.61 | 26.23 | 1931 | 1968.0 | 2000 | 2011.0 | 2020 | ▂▂▂▃▇ |
| total_weeks | 0 | 1 | 8.13 | 11.21 | 1 | 2.0 | 4 | 10.0 | 178 | ▇▁▁▁▁ |
| debut_rank | 0 | 1 | 7.90 | 4.57 | 1 | 4.0 | 8 | 12.0 | 17 | ▇▆▅▅▅ |
| best_rank | 0 | 1 | 6.91 | 4.57 | 1 | 3.0 | 6 | 10.0 | 17 | ▇▅▃▃▂ |
data <- nyt %>%
# Treat missing values
select(-id) %>%
filter(!is.na(author)) %>%
filter(total_weeks < 100) %>%
mutate(total_weeks = log(total_weeks)) %>%
mutate(decade = year %/% 10 * 10)
Identify good predictors.
debut_rank
data %>%
ggplot(aes(as.factor(debut_rank), total_weeks)) +
geom_boxplot()
best_rank
data %>%
ggplot(aes(as.factor(best_rank), total_weeks)) +
scale_y_log10() +
geom_boxplot()
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1684 rows containing non-finite values (`stat_boxplot()`).
author
data %>%
group_by(author) %>%
summarise(total_weeks_avg = mean(total_weeks)) %>% ungroup() %>%
slice_max(order_by = total_weeks_avg, n = 20) %>%
ggplot(aes(total_weeks_avg, fct_reorder(author, total_weeks_avg))) +
geom_col() +
labs(title = "Best Author by Total Weeks", y = NULL)
Words in title
data %>%
#tokenize title
unnest_tokens(output = word, input = title) %>%
#calculate avg rent per word
group_by(word) %>%
summarise(total_weeks = mean(total_weeks),
n = n()) %>%
ungroup() %>%
filter(n > 10, !str_detect(word, "\\a")) %>%
slice_max(order_by = total_weeks, n = 20) %>%
#plot
ggplot(aes(total_weeks, fct_reorder(word, total_weeks))) +
geom_point() +
labs(y = "Words in Title")