Data

load("merged_data.RData")

merged_data <- merged_data %>%
    mutate(new_class = case_when(is.na(featurew_class) ~ 1,
            featurew_class == "1" ~ 2,
            featurew_class == "2" ~ 3,
            featurew_class == "3" ~ 0,
            TRUE ~ 99),
        new_class2 = case_when(is.na(totalw_class) ~ 1,
            totalw_class == "1" ~ 0,
            totalw_class == "2" ~ 2,
            TRUE ~ 99))

vac_comp_all

model <- glm(vac_comp_all ~factor(new_class)+sexident3+race+age, family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_comp_all ~ factor(new_class) + sexident3 + 
##     race + age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -1.72833    0.58920  -2.933 0.003353 ** 
## factor(new_class)1 -0.49288    0.13876  -3.552 0.000382 ***
## factor(new_class)2  0.15965    0.15168   1.053 0.292559    
## factor(new_class)3 -0.19203    0.35975  -0.534 0.593488    
## sexident3          -0.11792    0.09268  -1.272 0.203238    
## race               -0.06161    0.03028  -2.034 0.041924 *  
## age                 0.03073    0.02527   1.216 0.223956    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 647.77  on 1221  degrees of freedom
## Residual deviance: 621.46  on 1215  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 635.46
## 
## Number of Fisher Scoring iterations: 6
odds_ratios <- exp(coef(model))
print(odds_ratios)
##        (Intercept) factor(new_class)1 factor(new_class)2 factor(new_class)3 
##          0.1775815          0.6108657          1.1730991          0.8252798 
##          sexident3               race                age 
##          0.8887632          0.9402535          1.0312042
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                           OR      2.5 %    97.5 %
## (Intercept)        0.1775815 0.05467233 0.5606379
## factor(new_class)1 0.6108657 0.46148841 0.7965344
## factor(new_class)2 1.1730991 0.86638565 1.5718245
## factor(new_class)3 0.8252798 0.37628472 1.5765633
## sexident3          0.8887632 0.73723757 1.0614893
## race               0.9402535 0.88409909 0.9961046
## age                1.0312042 0.98146154 1.0846031
model <- glm(vac_comp_all ~factor(new_class2)+sexident3+race+age,
    family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_comp_all ~ factor(new_class2) + sexident3 + 
##     race + age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -1.66429    0.58553  -2.842  0.00448 ** 
## factor(new_class2)2   0.03792    0.13379   0.283  0.77685    
## factor(new_class2)99 -0.50724    0.14030  -3.615  0.00030 ***
## sexident3            -0.11904    0.09270  -1.284  0.19907    
## race                 -0.06288    0.03022  -2.080  0.03750 *  
## age                   0.02869    0.02517   1.140  0.25434    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 647.77  on 1221  degrees of freedom
## Residual deviance: 622.88  on 1216  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 634.88
## 
## Number of Fisher Scoring iterations: 6
odds_ratios <- exp(coef(model))
print(odds_ratios)
##          (Intercept)  factor(new_class2)2 factor(new_class2)99 
##            0.1893253            1.0386468            0.6021577 
##            sexident3                 race                  age 
##            0.8877727            0.9390589            1.0291097
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                             OR      2.5 %    97.5 %
## (Intercept)          0.1893253 0.05886933 0.5926005
## factor(new_class2)2  1.0386468 0.79628276 1.3460388
## factor(new_class2)99 0.6021577 0.45366267 0.7877403
## sexident3            0.8877727 0.73637578 1.0603393
## race                 0.9390589 0.88306612 0.9947287
## age                  1.0291097 0.97966908 1.0821213

vac_init_all

model <- glm(vac_init_all ~factor(new_class)+sexident3+race+age, family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_init_all ~ factor(new_class) + sexident3 + 
##     race + age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        -0.406617   0.394595  -1.030   0.3028  
## factor(new_class)1 -0.203339   0.083531  -2.434   0.0149 *
## factor(new_class)2  0.112255   0.116906   0.960   0.3369  
## factor(new_class)3 -0.467867   0.266368  -1.756   0.0790 .
## sexident3          -0.057956   0.059964  -0.967   0.3338  
## race               -0.027697   0.018840  -1.470   0.1415  
## age                 0.007293   0.017000   0.429   0.6679  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1542.4  on 1221  degrees of freedom
## Residual deviance: 1527.5  on 1215  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 1541.5
## 
## Number of Fisher Scoring iterations: 4
odds_ratios <- exp(coef(model))
print(odds_ratios)
##        (Intercept) factor(new_class)1 factor(new_class)2 factor(new_class)3 
##          0.6658994          0.8160013          1.1187984          0.6263368 
##          sexident3               race                age 
##          0.9436913          0.9726831          1.0073195
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                           OR     2.5 %    97.5 %
## (Intercept)        0.6658994 0.3068255 1.4413913
## factor(new_class)1 0.8160013 0.6924812 0.9608168
## factor(new_class)2 1.1187984 0.8889997 1.4061514
## factor(new_class)3 0.6263368 0.3640141 1.0393747
## sexident3          0.9436913 0.8383069 1.0612050
## race               0.9726831 0.9370776 1.0092623
## age                1.0073195 0.9743462 1.0415124
model <- glm(vac_init_all ~factor(new_class2)+sexident3+race+age, family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_init_all ~ factor(new_class2) + sexident3 + 
##     race + age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          -0.365280   0.392773  -0.930   0.3524  
## factor(new_class2)2   0.017456   0.099813   0.175   0.8612  
## factor(new_class2)99 -0.203705   0.085109  -2.393   0.0167 *
## sexident3            -0.056179   0.059920  -0.938   0.3485  
## race                 -0.028282   0.018788  -1.505   0.1322  
## age                   0.005398   0.016969   0.318   0.7504  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1542.4  on 1221  degrees of freedom
## Residual deviance: 1532.0  on 1216  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 1544
## 
## Number of Fisher Scoring iterations: 4
odds_ratios <- exp(coef(model))
print(odds_ratios)
##          (Intercept)  factor(new_class2)2 factor(new_class2)99 
##            0.6940020            1.0176090            0.8157031 
##            sexident3                 race                  age 
##            0.9453696            0.9721141            1.0054130
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                             OR     2.5 %    97.5 %
## (Intercept)          0.6940020 0.3211401 1.4961515
## factor(new_class2)2  1.0176090 0.8363856 1.2369705
## factor(new_class2)99 0.8157031 0.6901300 0.9634608
## sexident3            0.9453696 0.8399326 1.0629357
## race                 0.9721141 0.9366107 1.0085860
## age                  1.0054130 0.9725670 1.0394620