Dear reader :)

This is a first pass at our analyses. The graphs and regression outputs are super ugly (I ran out of time to make pretty graphs and tables). Sorry! Please forgive!

I also didn’t get around to doing one of the exploratory models:

“We will test if the order participants are shown affects the relationship between dominance and perceived social impact: dominance_beliefs ~ industry_social_good*order + section_number + industry_worked_in”

Thanks! Sam

Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Load data

numeric <- read.csv("~/Downloads/(2024 num) Negotiations+-+Initial+assessment+-+Spring+2024.csv") %>% 
  slice(-(1:2))
text <- read.csv("~/Downloads/(2024 txt) Negotiations+-+Initial+assessment+-+Spring+2024.csv") %>% 
  slice(-(1:2))

Data cleaning

Select variables and merge dataframes

numeric_select <- numeric %>% 
  select(c(ResponseId, Q133, Q129:Q132_17, age)) %>% 
  mutate(across(starts_with("Q132"), as.numeric)) %>% 
  mutate(age = as.numeric(age))

text_select <- text %>% 
  select(ResponseId, Q126:Q127_5_TEXT, gender:race_6_TEXT) 

full_data <- numeric_select %>% 
  left_join(text_select, by = "ResponseId")

Rename variables and reverse code

full_data <- full_data %>% 
  dplyr::rename(section = Q133,
                industry = Q126,
                industry_other = Q126_23_TEXT,
                profit_status_prevEmploy = Q127,
                profit_status_prevEmploy_other = Q127_5_TEXT,
                socialImpact_1 = Q129,
                socialImpact_2 = Q130,
                socialImpact_3 = Q131,
                dominance_1 = Q132_1,
                dominance_2 = Q132_2,
                dominance_3 = Q132_3,
                dominance_4 = Q132_4,
                dominance_5 = Q132_5,
                dominance_6 = Q132_6,
                dominance_7 = Q132_7,
                dominance_8 = Q132_8,
                prestige_1 = Q132_9,
                prestige_2 = Q132_10,
                prestige_3 = Q132_11,
                prestige_4 = Q132_12,
                prestige_5 = Q132_13,
                prestige_6 = Q132_14,
                prestige_7 = Q132_15,
                prestige_8 = Q132_16,
                prestige_9 = Q132_17) %>% 
  rowwise() %>% 
  mutate(dominance_5_R = 6 - dominance_5) %>% 
  mutate(dominance_7_R = 6 - dominance_7) %>% 
  mutate(prestige_2_R = 6 - prestige_2) %>% 
  mutate(prestige_4_R = 6 - prestige_4) %>% 
  mutate(prestige_9_R = 6 - prestige_9) %>% 
  ungroup() %>% 
  mutate(dominance_beliefs = rowMeans(select(., starts_with("dom")), na.rm = T)) %>% 
  mutate(prestige_beliefs = rowMeans(select(., starts_with("pres")), na.rm = T)) %>% 
  mutate(across(starts_with("social"), as.numeric)) %>% 
  mutate(industry_social_good = rowMeans(select(., starts_with("social")), na.rm = T))

Primary analysis

We will run the following model in R: dominance_beliefs ~ industry_social_good + section_number + industry_worked_in

QUESTION: What should the reference level be for section number and industry worked in?

model = full_data %>% 
  lm(dominance_beliefs ~ industry_social_good + section + industry, data = .)
model %>% 
  summary()
## 
## Call:
## lm(formula = dominance_beliefs ~ industry_social_good + section + 
##     industry, data = .)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.060 -0.371  0.000  0.312  1.249 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          2.724257   0.399230   6.824 4.64e-10 ***
## industry_social_good                -0.022889   0.046329  -0.494   0.6222    
## section2                             0.007666   0.115918   0.066   0.9474    
## section3                            -0.090330   0.111453  -0.810   0.4194    
## industryE-commerce                  -0.106057   0.424839  -0.250   0.8033    
## industryEngineering                  0.489457   0.453224   1.080   0.2825    
## industryEntertainment & Sports       0.386421   0.398242   0.970   0.3340    
## industryFinance                      0.418173   0.372096   1.124   0.2635    
## industryGovernment                   0.546798   0.438706   1.246   0.2152    
## industryHealthcare                   0.121204   0.425513   0.285   0.7763    
## industryHospitality                  0.420671   0.633421   0.664   0.5080    
## industryHuman Resources             -0.396592   0.612003  -0.648   0.5183    
## industryInformation Technology (IT)  0.194583   0.462804   0.420   0.6750    
## industryManufacturing                0.178300   0.534279   0.334   0.7392    
## industryMilitary                     0.754716   0.463445   1.628   0.1062    
## industryOther:                       0.277502   0.381586   0.727   0.4686    
## industryPharmaceutical               0.254716   0.463445   0.550   0.5837    
## industryReal Estate                  0.113787   0.434469   0.262   0.7939    
## industryRetail                       0.775478   0.424615   1.826   0.0704 .  
## industrySales                        0.163078   0.517521   0.315   0.7533    
## industryTech                         0.169301   0.387446   0.437   0.6630    
## industryTransportation               0.105411   0.626324   0.168   0.8666    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4918 on 113 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.1809, Adjusted R-squared:  0.02862 
## F-statistic: 1.188 on 21 and 113 DF,  p-value: 0.2752

No effect

ggplot(full_data, 
       aes(x=industry_social_good, 
           y=dominance_beliefs)) +
  geom_point(alpha = 0.5) + 
  geom_smooth(method=lm, 
              fullrange=TRUE) +
  theme_bw()
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 30 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 30 rows containing missing values (`geom_point()`).

Exploratory analyses

We will test if perceptions of the social good of the industry in which they last worked predicts prestige beliefs, controlling for section number is the section students are in and the industry they last worked in: prestige_beliefs ~ industry_social_good + section_number + industry_worked_in

model = full_data %>% 
  lm(prestige_beliefs ~ industry_social_good + section + industry, data = .)
model %>% 
  summary()
## 
## Call:
## lm(formula = prestige_beliefs ~ industry_social_good + section + 
##     industry, data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.59231 -0.16669  0.00238  0.16340  0.45577 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          3.455674   0.212015  16.299   <2e-16 ***
## industry_social_good                 0.035351   0.024604   1.437    0.154    
## section2                             0.036296   0.061560   0.590    0.557    
## section3                            -0.085295   0.059188  -1.441    0.152    
## industryE-commerce                  -0.003044   0.225615  -0.013    0.989    
## industryEngineering                 -0.197222   0.240690  -0.819    0.414    
## industryEntertainment & Sports      -0.058387   0.211491  -0.276    0.783    
## industryFinance                     -0.052851   0.197606  -0.267    0.790    
## industryGovernment                   0.121709   0.232980   0.522    0.602    
## industryHealthcare                  -0.150172   0.225973  -0.665    0.508    
## industryHospitality                 -0.310977   0.336385  -0.924    0.357    
## industryHuman Resources             -0.499153   0.325011  -1.536    0.127    
## industryInformation Technology (IT) -0.215141   0.245777  -0.875    0.383    
## industryManufacturing                0.052239   0.283735   0.184    0.854    
## industryMilitary                     0.029211   0.246118   0.119    0.906    
## industryOther:                       0.046446   0.202645   0.229    0.819    
## industryPharmaceutical               0.029211   0.246118   0.119    0.906    
## industryReal Estate                 -0.207400   0.230730  -0.899    0.371    
## industryRetail                      -0.227078   0.225497  -1.007    0.316    
## industrySales                       -0.292780   0.274835  -1.065    0.289    
## industryTech                        -0.098062   0.205757  -0.477    0.635    
## industryTransportation              -0.287410   0.332616  -0.864    0.389    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2612 on 113 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.1851, Adjusted R-squared:  0.03367 
## F-statistic: 1.222 on 21 and 113 DF,  p-value: 0.2466

No effect

ggplot(full_data, 
       aes(x=industry_social_good, 
           y=prestige_beliefs)) +
  geom_point(alpha = 0.5) + 
  geom_smooth(method=lm, 
              fullrange=TRUE) +
  theme_bw()
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 30 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 30 rows containing missing values (`geom_point()`).

We will run the primary analysis also controlling for prestige beliefs: dominance_beliefs ~ industry_social_good + prestige_beliefs + section_number + industry_worked_in

model = full_data %>% 
  lm(dominance_beliefs ~ industry_social_good + prestige_beliefs + section + industry, data = .)
model %>% 
  summary()
## 
## Call:
## lm(formula = dominance_beliefs ~ industry_social_good + prestige_beliefs + 
##     section + industry, data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9142 -0.3411  0.0000  0.3105  1.2479 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                          1.44026    0.71964   2.001   0.0478 *
## industry_social_good                -0.03602    0.04604  -0.783   0.4356  
## prestige_beliefs                     0.37156    0.17443   2.130   0.0353 *
## section2                            -0.00582    0.11432  -0.051   0.9595  
## section3                            -0.05864    0.11075  -0.529   0.5975  
## industryE-commerce                  -0.10493    0.41834  -0.251   0.8024  
## industryEngineering                  0.56274    0.44762   1.257   0.2113  
## industryEntertainment & Sports       0.40812    0.39228   1.040   0.3004  
## industryFinance                      0.43781    0.36652   1.195   0.2348  
## industryGovernment                   0.50158    0.43252   1.160   0.2487  
## industryHealthcare                   0.17700    0.41982   0.422   0.6741  
## industryHospitality                  0.53622    0.62609   0.856   0.3936  
## industryHuman Resources             -0.21113    0.60890  -0.347   0.7294  
## industryInformation Technology (IT)  0.27452    0.45727   0.600   0.5495  
## industryManufacturing                0.15889    0.52619   0.302   0.7632  
## industryMilitary                     0.74386    0.45639   1.630   0.1059  
## industryOther:                       0.26024    0.37584   0.692   0.4901  
## industryPharmaceutical               0.24386    0.45639   0.534   0.5942  
## industryReal Estate                  0.19085    0.42935   0.445   0.6575  
## industryRetail                       0.85985    0.41999   2.047   0.0430 *
## industrySales                        0.27186    0.51216   0.531   0.5966  
## industryTech                         0.20574    0.38190   0.539   0.5912  
## industryTransportation               0.21220    0.61878   0.343   0.7323  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4843 on 112 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.2127, Adjusted R-squared:  0.05811 
## F-statistic: 1.376 on 22 and 112 DF,  p-value: 0.1421

We will run the primary analysis controlling for demographic information (age, race/ethnicity, gender, nationality, political ideology): dominance_beliefs ~ industry_social_good + section_number + industry_worked_in + demographics

model = full_data %>% 
  lm(dominance_beliefs ~ industry_social_good + prestige_beliefs + section + industry + gender + age + race, data = .)
model %>% 
  summary()
## 
## Call:
## lm(formula = dominance_beliefs ~ industry_social_good + prestige_beliefs + 
##     section + industry + gender + age + race, data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99433 -0.29849 -0.00143  0.27102  1.22314 
## 
## Coefficients:
##                                                                   Estimate
## (Intercept)                                                        1.32206
## industry_social_good                                              -0.01759
## prestige_beliefs                                                   0.43059
## section2                                                          -0.01540
## section3                                                          -0.05851
## industryE-commerce                                                -0.06303
## industryEngineering                                                0.50814
## industryEntertainment & Sports                                     0.43328
## industryFinance                                                    0.41205
## industryGovernment                                                 0.46685
## industryHealthcare                                                 0.21889
## industryHospitality                                                0.45752
## industryHuman Resources                                           -0.13126
## industryInformation Technology (IT)                                0.21516
## industryManufacturing                                              0.01672
## industryMilitary                                                   0.58774
## industryOther:                                                     0.29642
## industryPharmaceutical                                             0.23900
## industryReal Estate                                                0.13347
## industryRetail                                                     1.08106
## industrySales                                                      0.33570
## industryTech                                                       0.25980
## industryTransportation                                             0.11600
## genderMale                                                         0.16610
## age                                                               -0.01015
## raceAsian/Asian-American/Pacific Islander,Hispanic/Latin American -0.27391
## raceAsian/Asian-American/Pacific Islander,White/European American  0.30612
## raceBlack/African American                                        -0.06805
## raceHispanic/Latin American                                       -0.06996
## raceOther (Please specify):                                        0.24476
## raceWhite/European American                                        0.03994
## raceWhite/European American,Hispanic/Latin American               -0.48975
## raceWhite/European American,Native American/Alaskan Native         0.23076
## raceWhite/European American,Other (Please specify):               -0.46706
##                                                                   Std. Error
## (Intercept)                                                          1.09003
## industry_social_good                                                 0.05139
## prestige_beliefs                                                     0.19243
## section2                                                             0.12893
## section3                                                             0.12079
## industryE-commerce                                                   0.43372
## industryEngineering                                                  0.46710
## industryEntertainment & Sports                                       0.40468
## industryFinance                                                      0.37942
## industryGovernment                                                   0.44239
## industryHealthcare                                                   0.44389
## industryHospitality                                                  0.65269
## industryHuman Resources                                              0.62468
## industryInformation Technology (IT)                                  0.47286
## industryManufacturing                                                0.54929
## industryMilitary                                                     0.49657
## industryOther:                                                       0.38908
## industryPharmaceutical                                               0.47346
## industryReal Estate                                                  0.44750
## industryRetail                                                       0.45017
## industrySales                                                        0.55545
## industryTech                                                         0.39391
## industryTransportation                                               0.63426
## genderMale                                                           0.10751
## age                                                                  0.02716
## raceAsian/Asian-American/Pacific Islander,Hispanic/Latin American    0.51305
## raceAsian/Asian-American/Pacific Islander,White/European American    0.37601
## raceBlack/African American                                           0.29349
## raceHispanic/Latin American                                          0.17228
## raceOther (Please specify):                                          0.40164
## raceWhite/European American                                          0.11027
## raceWhite/European American,Hispanic/Latin American                  0.53982
## raceWhite/European American,Native American/Alaskan Native           0.51579
## raceWhite/European American,Other (Please specify):                  0.52473
##                                                                   t value
## (Intercept)                                                         1.213
## industry_social_good                                               -0.342
## prestige_beliefs                                                    2.238
## section2                                                           -0.119
## section3                                                           -0.484
## industryE-commerce                                                 -0.145
## industryEngineering                                                 1.088
## industryEntertainment & Sports                                      1.071
## industryFinance                                                     1.086
## industryGovernment                                                  1.055
## industryHealthcare                                                  0.493
## industryHospitality                                                 0.701
## industryHuman Resources                                            -0.210
## industryInformation Technology (IT)                                 0.455
## industryManufacturing                                               0.030
## industryMilitary                                                    1.184
## industryOther:                                                      0.762
## industryPharmaceutical                                              0.505
## industryReal Estate                                                 0.298
## industryRetail                                                      2.401
## industrySales                                                       0.604
## industryTech                                                        0.660
## industryTransportation                                              0.183
## genderMale                                                          1.545
## age                                                                -0.374
## raceAsian/Asian-American/Pacific Islander,Hispanic/Latin American  -0.534
## raceAsian/Asian-American/Pacific Islander,White/European American   0.814
## raceBlack/African American                                         -0.232
## raceHispanic/Latin American                                        -0.406
## raceOther (Please specify):                                         0.609
## raceWhite/European American                                         0.362
## raceWhite/European American,Hispanic/Latin American                -0.907
## raceWhite/European American,Native American/Alaskan Native          0.447
## raceWhite/European American,Other (Please specify):                -0.890
##                                                                   Pr(>|t|)  
## (Intercept)                                                         0.2281  
## industry_social_good                                                0.7328  
## prestige_beliefs                                                    0.0275 *
## section2                                                            0.9052  
## section3                                                            0.6292  
## industryE-commerce                                                  0.8848  
## industryEngineering                                                 0.2793  
## industryEntertainment & Sports                                      0.2869  
## industryFinance                                                     0.2801  
## industryGovernment                                                  0.2939  
## industryHealthcare                                                  0.6230  
## industryHospitality                                                 0.4850  
## industryHuman Resources                                             0.8340  
## industryInformation Technology (IT)                                 0.6501  
## industryManufacturing                                               0.9758  
## industryMilitary                                                    0.2394  
## industryOther:                                                      0.4480  
## industryPharmaceutical                                              0.6148  
## industryReal Estate                                                 0.7661  
## industryRetail                                                      0.0182 *
## industrySales                                                       0.5470  
## industryTech                                                        0.5111  
## industryTransportation                                              0.8553  
## genderMale                                                          0.1255  
## age                                                                 0.7094  
## raceAsian/Asian-American/Pacific Islander,Hispanic/Latin American   0.5946  
## raceAsian/Asian-American/Pacific Islander,White/European American   0.4175  
## raceBlack/African American                                          0.8171  
## raceHispanic/Latin American                                         0.6855  
## raceOther (Please specify):                                         0.5437  
## raceWhite/European American                                         0.7179  
## raceWhite/European American,Hispanic/Latin American                 0.3665  
## raceWhite/European American,Native American/Alaskan Native          0.6556  
## raceWhite/European American,Other (Please specify):                 0.3756  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4915 on 99 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.2788, Adjusted R-squared:  0.03844 
## F-statistic:  1.16 on 33 and 99 DF,  p-value: 0.2832