Nutrition has been a scandalous topic for the last several years. The data reported from the article “You Can’t Trust What You Read About Nutrition” dates back to 2016, and controversy surrounding nutritional guidelines has skyrocketed since then. Public policy constituting a “healthy” diet is developed based on misrepresented self-reporting tools like food diaries and FFQs (food frequency questionnaires). Several correlations related to various health outcomes have been documented from the collected data, often leading to inaccurate, non-causal results. The code below selects the columns from the raw data provided in the article, which I deemed most valuable for analysis.

Article Link: https://fivethirtyeight.com/features/you-cant-trust-what-you-read-about-nutrition/

install.packages('readr', repos = "http://cran.us.r-project.org")
## 
## The downloaded binary packages are in
##  /var/folders/5m/4f5rvwrn5rngf6j4gpl2mc9w0000gn/T//Rtmpz8GVM9/downloaded_packages
library (readr)
urlfile="https://raw.githubusercontent.com/fivethirtyeight/data/master/nutrition-studies/raw_anonymized_data.csv"
raw_data<-read.csv(url(urlfile))
raw_data<- data.frame(raw_data)
subset_raw_data <-raw_data[c("ID", "cancer", "diabetes", "heart_disease", "ever_smoked", "currently_smoke", "DT_PROT", "DT_CARB", "DT_ALCO", "DT_SUG_T", "DT_FIBE", "DT_CHOL")]
subset_raw_data
##      ID cancer diabetes heart_disease ever_smoked currently_smoke DT_PROT
## 1  1003    Yes       No            No         Yes             Yes   87.15
## 2  1053     No      Yes           Yes         Yes             Yes   79.06
## 3  1006    Yes      Yes           Yes          No              No   89.54
## 4  1166     No       No            No          No              No   73.73
## 5  1134    Yes       No            No          No              No   59.86
## 6  1014     No       No            No         Yes             Yes   45.56
## 7  1074    Yes       No            No          No              No   35.30
## 8  1151    Yes       No           Yes          No              No   53.87
## 9  1001    Yes      Yes           Yes         Yes              No   43.49
## 10 1048    Yes       No            No          No              No   91.29
## 11 1073    Yes       No           Yes         Yes              No  116.90
## 12 1075     No      Yes            No          No              No   89.56
## 13 1051    Yes       No            No          No              No   75.56
## 14 1173     No      Yes           Yes          No              No   59.55
## 15 1148     No       No            No          No              No  110.83
## 16 1105     No       No           Yes          No              No   83.90
## 17 1008     No       No            No         Yes              No   99.86
## 18 1192    Yes       No           Yes         Yes             Yes   71.13
## 19 1081    Yes      Yes            No         Yes              No  115.04
## 20 1103     No       No            No          No              No   74.77
## 21 1071    Yes      Yes           Yes          No              No   59.06
## 22 1063     No       No            No         Yes              No   80.82
## 23 1146     No       No            No          No              No   70.98
## 24 1039     No       No           Yes         Yes             Yes   53.98
## 25 1058     No      Yes            No          No              No  160.35
## 26 1123     No       No            No         Yes              No  119.14
## 27 1068     No       No            No          No              No   80.15
## 28 1120     No       No           Yes          No              No   50.05
## 29 1115    Yes       No            No          No              No   83.74
## 30 1043     No       No           Yes          No              No   48.48
## 31 1152    Yes      Yes            No         Yes              No   54.69
## 32 1086    Yes       No           Yes         Yes              No   42.78
## 33 1076     No       No            No          No              No   83.52
## 34 1138    Yes      Yes            No          No              No   32.04
## 35 1177     No      Yes            No          No              No   46.77
## 36 1080     No       No           Yes          No              No   69.18
## 37 1034    Yes       No           Yes          No              No   85.99
## 38 1054    Yes      Yes            No          No              No  189.83
## 39 1101     No       No            No          No              No   99.25
## 40 1119     No       No           Yes          No              No   25.80
## 41 1102     No       No            No         Yes              No  102.15
## 42 1176    Yes       No            No          No              No   86.39
## 43 1022    Yes      Yes           Yes          No              No  159.46
## 44 1019    Yes       No            No          No              No   64.13
## 45 1153     No       No            No          No              No   65.07
## 46 1128    Yes       No           Yes         Yes              No   43.07
## 47 1002     No       No            No          No              No  113.82
## 48 1026    Yes      Yes           Yes          No              No   74.58
## 49 1013    Yes       No            No          No              No   47.18
## 50 1129    Yes       No            No          No              No   75.32
## 51 1005    Yes      Yes            No          No              No   51.93
## 52 1044    Yes       No            No          No              No   93.68
## 53 1045    Yes       No           Yes         Yes              No  115.87
## 54 1093     No       No            No          No              No   59.72
##    DT_CARB  DT_ALCO DT_SUG_T DT_FIBE DT_CHOL
## 1    62.10 40.57000    25.50    8.90  507.92
## 2   197.57 16.66000    86.30   13.41  269.81
## 3   254.19  9.31000   100.76   17.00  259.12
## 4   377.33  0.00115   187.25   37.35  224.06
## 5   201.19 44.47000    76.28   20.39  165.06
## 6   167.93  6.99000    55.08   29.80   71.13
## 7   142.38 15.62000    53.19   13.88   71.60
## 8   147.10  4.24000    62.46   13.92  338.24
## 9   133.87 23.38000    39.35   14.06  118.31
## 10  249.77  3.94000    76.61   29.75  379.11
## 11  371.87 23.04000   161.87   36.14  258.93
## 12  142.74 16.13000    49.34   14.19  267.96
## 13  254.82 21.08000    63.60   37.79   45.16
## 14  189.34  8.95000    83.01   22.99  200.07
## 15  245.70  1.64000    77.71   27.73  307.83
## 16  239.38 26.59000    85.27   22.52  424.76
## 17  260.59 30.14000    68.62   34.80  495.97
## 18  205.78 33.83000    51.26   21.02  204.28
## 19  372.32  0.00000   106.34   92.87  120.80
## 20  249.09  0.00000   100.83   15.41  307.67
## 21  156.72  3.89000    56.02   11.97  151.16
## 22  213.93 16.14000    80.18   15.47  287.90
## 23  180.39 12.73000    63.20   20.68  191.49
## 24  176.99 72.23000    46.57    8.81  145.04
## 25  322.33  0.00000   159.58   21.58  847.40
## 26  309.65 16.44000   121.83   26.01  383.45
## 27  277.72 54.56000   171.50   13.54  153.73
## 28  194.50 21.20000    75.84   21.24  112.89
## 29  149.85 13.99000    65.60   29.60  565.27
## 30  135.92 14.64000    49.26   13.54  113.75
## 31  170.69  0.82600    87.52   13.34  212.47
## 32  137.64  9.03000    43.89   13.53  129.01
## 33  185.35 20.05000    44.06   19.39  471.53
## 34  156.99  0.18400   106.47    8.03   62.42
## 35  159.59  0.03680    57.61   15.21  146.99
## 36  168.82  0.00000   106.85   11.37  376.84
## 37  228.39  0.71600   104.93   20.04  241.22
## 38  516.19  4.70000   195.31   38.74  758.42
## 39  344.19 67.97000   104.98   21.77  245.72
## 40   84.71 28.66000    24.62    7.92   81.76
## 41   80.33 13.10000    40.33   13.46  655.72
## 42  261.29  0.00000   112.22   22.77  181.14
## 43  366.45 18.54000   109.76   38.58  793.10
## 44  105.57  8.06000    47.00   14.98  220.21
## 45  246.68 17.29000    99.03   25.98  173.63
## 46  164.42  0.15500    61.73   29.51  119.99
## 47  315.70 38.22000   106.42   42.94  383.22
## 48  249.73 18.11000   105.38   51.10  154.35
## 49  159.80 28.81000    74.85   11.77  130.79
## 50  198.48  2.43000    88.59   26.15  268.60
## 51  171.83  6.12000    72.68   16.08   81.39
## 52  207.24  6.12000   115.79   20.33  242.73
## 53  247.17 37.98000    85.34   38.66  267.13
## 54  160.55 23.56000    37.51   23.79  255.71
colnames(subset_raw_data) <- c("ID", "Diabetes", "Heart Disease", "Ever Smoked", "Currently Smoke", "Daily Protein Intake", "Daily Carbohydrate Intake", "Daily Alcohol Intake", "Daily Sugar Intake", "Daily Fiber Intake", "Daily Cholesterol Intake")
summary(subset_raw_data)
##        ID         Diabetes         Heart Disease      Ever Smoked       
##  Min.   :1001   Length:54          Length:54          Length:54         
##  1st Qu.:1043   Class :character   Class :character   Class :character  
##  Median :1076   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1083                                                           
##  3rd Qu.:1127                                                           
##  Max.   :1192                                                           
##  Currently Smoke    Daily Protein Intake Daily Carbohydrate Intake
##  Length:54          Length:54            Min.   : 25.80           
##  Class :character   Class :character     1st Qu.: 54.16           
##  Mode  :character   Mode  :character     Median : 75.05           
##                                          Mean   : 78.61           
##                                          3rd Qu.: 90.86           
##                                          Max.   :189.83           
##  Daily Alcohol Intake Daily Sugar Intake Daily Fiber Intake
##  Min.   : 62.1        Min.   : 0.000     Min.   : 24.62    
##  1st Qu.:159.6        1st Qu.: 3.902     1st Qu.: 55.31    
##  Median :198.0        Median :14.315     Median : 77.16    
##  Mean   :216.1        Mean   :16.724     Mean   : 83.95    
##  3rd Qu.:253.1        3rd Qu.:23.295     3rd Qu.:105.28    
##  Max.   :516.2        Max.   :72.230     Max.   :195.31    
##  Daily Cholesterol Intake       NA        
##  Min.   : 7.92            Min.   : 45.16  
##  1st Qu.:13.89            1st Qu.:145.53  
##  Median :20.54            Median :232.64  
##  Mean   :23.18            Mean   :271.18  
##  3rd Qu.:29.07            3rd Qu.:330.64  
##  Max.   :92.87            Max.   :847.40

As mentioned in the introduction, self-reporting and the inability to obtain accurate measurements are the biggest fallouts of nutritional studies to date. Ironically, it is the lack of education surrounding nutrition that makes the issue of self-reporting worse. Many people don’t know how to read a nutrition label or recognize serving sizes without a food scale, which inevitably leads to inaccurate caloric reporting. I do believe there is an issue here of having too many data points- which was often referenced in the article. Keeping people under lock and key for months, weeks, and/or years at a time for metabolic studies is unrealistic meaning that self-reporting is still the most feasible tool that we have. Aside from such studies, I am unsure of how self-reporting can be improved. However, it is important to remember that everyone has different dietary needs and restrictions, which is why nutrition is not a “one-size-fits-all approach.”