## Loading required package: readxl
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
## Loading required package: solartime
## - Winter data excluded.
## - The counts of all passing / wintering species (not breeding in the sampled unit) were set to zero. Abreed_and_non_breed contains the non-breeders as well.
## - Species less likely to be interacting with sampling location were EXCLUDED
## - observations with counts greater than or equal to 10 standard deviations AND greater than or equal to 60 individuals were set to 1,
## under the assumption that these are migrating or local wandering phenomena.
## No outliers found in unit Arid South.
## 2 outliers set equal to 1 in Herbaceous and Dwarf-Shrub Vegetation unit.
## unit point_name year
## 1: Herbaceous and Dwarf-Shrub Vegetation Gamla Near 3 2014
## 2: Herbaceous and Dwarf-Shrub Vegetation Yavneel Far 2 2018
## SciName count_under_250 Z_score
## 1: Passer domesticus 62 11.90316
## 2: Passer hispaniolensis 60 11.35733
## No outliers found in unit Inland Sands.
## No outliers found in unit Loess Covered Areas in the Northern Negev.
## No outliers found in unit Mediterranean-Desert Transition Zone.
## 5 outliers set equal to 1 in Mediterranean Maquis unit.
## unit point_name year SciName
## 1: Mediterranean Maquis Beit Oren Near 1 2019 Curruca curruca
## 2: Mediterranean Maquis Beit Oren Near 3 2019 Curruca curruca
## 3: Mediterranean Maquis Kerem Maharal Near 3 2021 Chloris chloris
## 4: Mediterranean Maquis Kerem Maharal Near 3 2021 Garrulus glandarius
## 5: Mediterranean Maquis Nir Etzion Far 11 2021 Columba livia
## count_under_250 Z_score
## 1: 99 11.94535
## 2: 142 17.16927
## 3: 80 19.19266
## 4: 150 20.50138
## 5: 100 14.85118
## 2 outliers set equal to 1 in Negev Highlands unit.
## unit point_name year SciName
## 1: Negev Highlands Yeruham Far Slope 5 2018 Carpospiza brachydactyla
## 2: Negev Highlands Bislach Near Slope 6 2020 Passer hispaniolensis
## count_under_250 Z_score
## 1: 70 14.34802
## 2: 100 10.61343
## No outliers found in unit Planted Conifer Forest.
Unit is divided into 3 subunits: Judea, Carmel and Galilee. Only factors is time. All plots are located far from settlements. Sampling started in spring 2014. Total 5 campaigns, 3 subunits per campaign, 5 sites per subunit, with 3 plots per site. Total of 45 plots per campaign, and 225 plot-campaign combinations.
Raw data Total abundance: 6230 Number of observations: 2161 Total richness: 86
Filtered data Total abundance: 4150 Number of observations: 1355 Total richness: 43
Richness done with rare species. Abundance and mean abundance done without rare species. Full models include cosine and sine of the time difference from June 21st (in radians).
Explore data.
## [1] "RICHNESS WITH RARE SPECIES"
| richness | year_ct | site | subunit | td_sc | cos_td_rad | sin_td_rad | h_from_sunrise | cos_hsun | sin_hsun | monitors_name | wind | precipitation | temperature | clouds | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Min. : 1.000 | Min. :2.0 | Aderet : 15 | Judean Highlands:75 | Min. :-2.3697 | Min. :-0.3335 | Min. :-0.9959 | Length:225 | Min. :-0.2639 | Min. :-0.1201 | Eyal Shochat: 35 | 0 : 24 | 0 : 56 | 0 : 0 | 0 : 9 | |
| 1st Qu.: 5.000 | 1st Qu.:3.0 | Amatzia : 15 | Carmel :75 | 1st Qu.:-0.2713 | 1st Qu.: 0.5702 | 1st Qu.:-0.8215 | Class :difftime | 1st Qu.: 0.6155 | 1st Qu.: 0.2784 | Asaf Mayrose: 23 | 1 : 13 | 3 : 3 | 1 : 20 | 1 : 3 | |
| Median : 6.000 | Median :5.0 | Bat Shlomo: 15 | Galilee :75 | Median : 0.3010 | Median : 0.7611 | Median :-0.6486 | Mode :numeric | Median : 0.8098 | Median : 0.5867 | Sassi Haham : 18 | 2 : 7 | NA’s:166 | 2 : 26 | 2 : 1 | |
| Mean : 6.022 | Mean :5.2 | Eitanim : 15 | NA | Mean : 0.2127 | Mean : 0.6933 | Mean :-0.6326 | NA | Mean : 0.7332 | Mean : 0.5336 | Eliraz Dvir : 12 | 3 : 1 | NA | 3 : 1 | 3 : 2 | |
| 3rd Qu.: 7.000 | 3rd Qu.:7.0 | Elyakim : 15 | NA | 3rd Qu.: 0.6444 | 3rd Qu.: 0.8521 | 3rd Qu.:-0.5234 | NA | 3rd Qu.: 0.9605 | 3rd Qu.: 0.7881 | Eran Banker : 9 | NA’s:180 | NA | NA’s:178 | NA’s:210 | |
| Max. :13.000 | Max. :9.0 | Eshtaol : 15 | NA | Max. : 1.6364 | Max. : 0.9947 | Max. :-0.1031 | NA | Max. : 1.0000 | Max. : 1.0000 | (Other) : 20 | NA | NA | NA | NA | |
| NA | NA | (Other) :135 | NA | NA | NA | NA | NA | NA’s :45 | NA’s :45 | NA’s :108 | NA | NA | NA | NA |
no observation for all 4 weather variables. many NAs for sampling time of day variables.exclude from model. An extreme observation of richness>20 in Judean highlands near settlements.
| richness | year_ct | site | subunit | td_sc | cos_td_rad | sin_td_rad | h_from_sunrise | cos_hsun | sin_hsun | |
|---|---|---|---|---|---|---|---|---|---|---|
| richness | 1.0000000 | -0.0869667 | -0.1526824 | -0.2098492 | 0.2468122 | 0.2620866 | 0.2032932 | -0.1291245 | 0.1729942 | -0.0748826 |
| year_ct | -0.0869667 | 1.0000000 | 0.0000000 | 0.0000000 | -0.4304647 | -0.4084156 | -0.4336689 | -0.0881196 | 0.0985736 | -0.0618585 |
| site | -0.1526824 | 0.0000000 | 1.0000000 | 0.7181325 | -0.1237969 | -0.0708077 | -0.2124888 | 0.2856522 | -0.2977022 | 0.2576585 |
| subunit | -0.2098492 | 0.0000000 | 0.7181325 | 1.0000000 | -0.1180592 | -0.0606624 | -0.2128418 | 0.2944203 | -0.3327003 | 0.2303051 |
| td_sc | 0.2468122 | -0.4304647 | -0.1237969 | -0.1180592 | 1.0000000 | 0.9753453 | 0.9307073 | 0.0619157 | -0.0348851 | 0.0841439 |
| cos_td_rad | 0.2620866 | -0.4084156 | -0.0708077 | -0.0606624 | 0.9753453 | 1.0000000 | 0.8324627 | 0.1128374 | -0.0873088 | 0.1309387 |
| sin_td_rad | 0.2032932 | -0.4336689 | -0.2124888 | -0.2128418 | 0.9307073 | 0.8324627 | 1.0000000 | -0.0274966 | 0.0538205 | -0.0012408 |
| h_from_sunrise | -0.1291245 | -0.0881196 | 0.2856522 | 0.2944203 | 0.0619157 | 0.1128374 | -0.0274966 | 1.0000000 | -0.9603558 | 0.9618286 |
| cos_hsun | 0.1729942 | 0.0985736 | -0.2977022 | -0.3327003 | -0.0348851 | -0.0873088 | 0.0538205 | -0.9603558 | 1.0000000 | -0.8509778 |
| sin_hsun | -0.0748826 | -0.0618585 | 0.2576585 | 0.2303051 | 0.0841439 | 0.1309387 | -0.0012408 | 0.9618286 | -0.8509778 | 1.0000000 |
Fit Poisson glm, check for existence of overdispersion
## [1] "Estimating overdispersion parameter phi: (Res. Dev.)/(n-p) where n=number of observations; p=number of parameters in the model."
## [1] "od = 0.658637694737327"
Overdispersion parameter is < 1. Choose Poisson.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00332887 (tol = 0.002, component 1)
go with mixed model with subunits as a fixed effect (want to make statement about subunits), attempt model selection yet.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: richness ~ subunit * year_ct + cos_td_rad + sin_td_rad + (1 |
## site)
## Data: P.anal
##
## AIC BIC logLik deviance df.resid
## 965.2 995.9 -473.6 947.2 216
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7752 -0.5322 -0.0193 0.4039 2.7190
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.01239 0.1113
## Number of obs: 225, groups: site, 15
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.04905 0.33058 3.173 0.00151 **
## subunitCarmel 0.13102 0.17236 0.760 0.44718
## subunitGalilee -0.07910 0.17679 -0.447 0.65459
## year_ct 0.01929 0.02006 0.961 0.33638
## cos_td_rad 0.67536 0.24778 2.726 0.00642 **
## sin_td_rad -0.39325 0.28670 -1.372 0.17017
## subunitCarmel:year_ct -0.03749 0.02601 -1.441 0.14950
## subunitGalilee:year_ct -0.02178 0.02704 -0.805 0.42054
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sbntCr sbntGl yer_ct cs_td_ sn_td_ sbnC:_
## subunitCrml -0.029
## subunitGall -0.026 0.548
## year_ct -0.148 0.622 0.603
## cos_td_rad -0.933 -0.180 -0.179 -0.050
## sin_td_rad 0.841 0.317 0.307 0.300 -0.844
## sbntCrml:y_ 0.131 -0.808 -0.426 -0.708 0.034 -0.158
## sbntGll:yr_ 0.045 -0.439 -0.823 -0.688 0.120 -0.227 0.499
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00332887 (tol = 0.002, component 1)
perform stepwise model selection of poisson mixed model.
## Single term deletions
##
## Model:
## richness ~ subunit * year_ct + cos_td_rad + sin_td_rad + (1 |
## site)
## npar AIC
## <none> 965.18
## cos_td_rad 1 971.36
## sin_td_rad 1 965.10
## subunit:year_ct 2 963.27
remove subunit X year.
## Single term deletions
##
## Model:
## richness ~ subunit + year_ct + cos_td_rad + sin_td_rad + (1 |
## site)
## npar AIC
## <none> 963.27
## subunit 2 962.88
## year_ct 1 961.30
## cos_td_rad 1 969.76
## sin_td_rad 1 964.06
drop year.
## Single term deletions
##
## Model:
## richness ~ subunit + cos_td_rad + sin_td_rad + (1 | site)
## npar AIC
## <none> 961.30
## subunit 2 960.89
## cos_td_rad 1 967.83
## sin_td_rad 1 962.09
drop subunit.
## Single term deletions
##
## Model:
## richness ~ cos_td_rad + sin_td_rad + (1 | site)
## npar AIC
## <none> 960.89
## cos_td_rad 1 967.34
## sin_td_rad 1 961.41
drop sine.
## Single term deletions
##
## Model:
## richness ~ cos_td_rad + (1 | site)
## npar AIC
## <none> 961.41
## cos_td_rad 1 968.85
only time of year remains. Final model:
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: richness ~ cos_td_rad + (1 | site)
## Data: P.anal
##
## AIC BIC logLik deviance df.resid
## 961.4 971.7 -477.7 955.4 222
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.81116 -0.55209 -0.05948 0.41685 2.46546
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.01481 0.1217
## Number of obs: 225, groups: site, 15
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.54330 0.09217 16.745 < 2e-16 ***
## cos_td_rad 0.34666 0.11534 3.005 0.00265 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## cos_td_rad -0.892
## $site
## (Intercept)
## Aderet 0.041958260
## Amatzia 0.194200215
## Bat Shlomo 0.050085708
## Eitanim -0.057342406
## Elyakim 0.017471976
## Eshtaol -0.142787807
## Givat Yeshayahu 0.134084761
## Kabri -0.117575421
## Kerem Maharal 0.066797701
## Manara -0.094902416
## Meron -0.110849885
## Ofer -0.009267953
## Ramat Hashofet 0.008894432
## Ramot Naftali 0.055138130
## Zuriel -0.008776173
##
## with conditional variances for "site"
## $site
attempt to add year, see if significant:
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: richness ~ year_ct + cos_td_rad + (1 | site)
## Data: P.anal
##
## AIC BIC logLik deviance df.resid
## 963.4 977.0 -477.7 955.4 221
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.80811 -0.54823 -0.05958 0.40392 2.42124
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.01476 0.1215
## Number of obs: 225, groups: site, 15
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.522036 0.133873 11.369 < 2e-16 ***
## year_ct 0.002545 0.011607 0.219 0.82644
## cos_td_rad 0.358225 0.126935 2.822 0.00477 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) yer_ct
## year_ct -0.725
## cos_td_rad -0.860 0.416
year not significant, rightfully dropped.
No statistically significant effects of subunit or time found for richness.
Explore data. Exclude time of day because of high number of NAs.
## [1] "GEOMETRIC MEAN ABUNDANCE WITHOUT RARE SPECIES"
| gma | year_ct | site | settlements | subunit | td_sc | cos_td_rad | sin_td_rad | |
|---|---|---|---|---|---|---|---|---|
| Min. :1.000 | Min. :2.0 | Aderet : 15 | Far : 0 | Judean Highlands:75 | Min. :-2.3697 | Min. :-0.3335 | Min. :-0.9959 | |
| 1st Qu.:1.861 | 1st Qu.:3.0 | Amatzia : 15 | Near: 0 | Carmel :75 | 1st Qu.:-0.2713 | 1st Qu.: 0.5702 | 1st Qu.:-0.8215 | |
| Median :2.330 | Median :5.0 | Bat Shlomo: 15 | NA’s:225 | Galilee :75 | Median : 0.3010 | Median : 0.7611 | Median :-0.6486 | |
| Mean :2.574 | Mean :5.2 | Eitanim : 15 | NA | NA | Mean : 0.2127 | Mean : 0.6933 | Mean :-0.6326 | |
| 3rd Qu.:3.061 | 3rd Qu.:7.0 | Elyakim : 15 | NA | NA | 3rd Qu.: 0.6444 | 3rd Qu.: 0.8521 | 3rd Qu.:-0.5234 | |
| Max. :6.327 | Max. :9.0 | Eshtaol : 15 | NA | NA | Max. : 1.6364 | Max. : 0.9947 | Max. :-0.1031 | |
| NA | NA | (Other) :135 | NA | NA | NA | NA | NA |
Fit glm, compare gamma, gaussian (poisson inappropriate because response is not discrete)
Remove rows 67, 112.
Fit fixed and mixed models.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0245391 (tol = 0.002, component 1)
Mixed model did not converge, attempt model selection.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Gamma ( inverse )
## Formula: gma ~ subunit * year_ct + cos_td_rad + sin_td_rad + (1 | site)
## Data: P.anal
##
## AIC BIC logLik deviance df.resid
## 564.6 598.7 -272.3 544.6 213
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6655 -0.6553 -0.1655 0.5333 3.0425
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.0003395 0.01843
## Residual 0.1162229 0.34091
## Number of obs: 223, groups: site, 15
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|z|)
## (Intercept) 0.539774 0.111683 4.833 1.34e-06 ***
## subunitCarmel -0.016579 0.050921 -0.326 0.74474
## subunitGalilee 0.157705 0.059452 2.653 0.00799 **
## year_ct 0.011174 0.006922 1.614 0.10649
## cos_td_rad -0.146400 0.083722 -1.749 0.08035 .
## sin_td_rad 0.159644 0.094525 1.689 0.09124 .
## subunitCarmel:year_ct -0.006663 0.008195 -0.813 0.41616
## subunitGalilee:year_ct -0.016063 0.009618 -1.670 0.09489 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sbntCr sbntGl yer_ct cs_td_ sn_td_ sbnC:_
## subunitCrml -0.024
## subunitGall -0.013 0.546
## year_ct -0.195 0.676 0.582
## cos_td_rad -0.942 -0.174 -0.157 0.006
## sin_td_rad 0.850 0.329 0.291 0.245 -0.845
## sbntCrml:y_ 0.176 -0.830 -0.450 -0.780 -0.002 -0.135
## sbntGll:yr_ 0.056 -0.469 -0.863 -0.671 0.096 -0.206 0.535
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0245391 (tol = 0.002, component 1)
perform stepwise model selection of gaussian model.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00783015 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00313316 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00368728 (tol = 0.002, component 1)
## Single term deletions
##
## Model:
## gma ~ subunit * year_ct + cos_td_rad + sin_td_rad + (1 | site)
## npar AIC
## <none> 564.62
## cos_td_rad 1 565.95
## sin_td_rad 1 565.58
## subunit:year_ct 2 563.40
drop year : subunit
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00368728 (tol = 0.002, component 1)
## Single term deletions
##
## Model:
## gma ~ subunit + year_ct + cos_td_rad + sin_td_rad + (1 | site)
## npar AIC
## <none> 563.40
## subunit 2 569.61
## year_ct 1 562.38
## cos_td_rad 1 564.21
## sin_td_rad 1 563.39
drop year
## Single term deletions
##
## Model:
## gma ~ subunit + cos_td_rad + sin_td_rad + (1 | site)
## npar AIC
## <none> 562.38
## subunit 2 568.55
## cos_td_rad 1 563.38
## sin_td_rad 1 561.91
drop sine
## Single term deletions
##
## Model:
## gma ~ subunit + cos_td_rad + (1 | site)
## npar AIC
## <none> 561.91
## subunit 2 569.17
## cos_td_rad 1 561.68
drop cosine.
## Single term deletions
##
## Model:
## gma ~ subunit + (1 | site)
## npar AIC
## <none> 561.68
## subunit 2 569.51
Only subunit remains. This is the final model:
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Gamma ( inverse )
## Formula: gma ~ subunit + (1 | site)
## Data: P.anal
##
## AIC BIC logLik deviance df.resid
## 561.7 578.7 -275.8 551.7 218
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6633 -0.6407 -0.1850 0.5666 3.2713
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.0002287 0.01512
## Residual 0.1224116 0.34987
## Number of obs: 223, groups: site, 15
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|z|)
## (Intercept) 0.40298 0.01839 21.915 < 2e-16 ***
## subunitCarmel -0.06942 0.02443 -2.841 0.00449 **
## subunitGalilee 0.06403 0.02772 2.310 0.02088 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sbntCr
## subunitCrml -0.748
## subunitGall -0.662 0.497
## $site
## (Intercept)
## Aderet 0.0014332238
## Amatzia 0.0052545903
## Bat Shlomo 0.0053741289
## Eitanim 0.0011619522
## Elyakim 0.0030863418
## Eshtaol -0.0063275188
## Givat Yeshayahu -0.0019589870
## Kabri -0.0087587560
## Kerem Maharal -0.0092614993
## Manara 0.0043994590
## Meron 0.0011939807
## Ofer -0.0017370411
## Ramat Hashofet 0.0017625159
## Ramot Naftali 0.0027354100
## Zuriel 0.0002541877
##
## with conditional variances for "site"
## $site
## Registered S3 methods overwritten by 'broom':
## method from
## tidy.glht jtools
## tidy.summary.glht jtools
| Observations | 223 |
| Dependent variable | gma |
| Type | Mixed effects generalized linear model |
| Family | Gamma |
| Link | inverse |
| AIC | 561.68 |
| BIC | 578.72 |
| Pseudo-R² (fixed effects) | NA |
| Pseudo-R² (total) | NA |
| Est. | S.E. | t val. | p | |
|---|---|---|---|---|
| (Intercept) | 0.40 | 0.02 | 21.92 | 0.00 |
| subunitCarmel | -0.07 | 0.02 | -2.84 | 0.00 |
| subunitGalilee | 0.06 | 0.03 | 2.31 | 0.02 |
| Group | Parameter | Std. Dev. |
|---|---|---|
| site | (Intercept) | 0.02 |
| Residual | 0.35 |
| Group | # groups | ICC |
|---|---|---|
| site | 15 | 0.00 |
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands 0.403 0.0184 Inf 0.367 0.439
## Carmel 0.334 0.0162 Inf 0.302 0.365
## Galilee 0.467 0.0208 Inf 0.426 0.508
##
## Results are given on the inverse (not the response) scale.
## Confidence level used: 0.95
## [1] 39.82036
## [1] 20.65868
## [1] 15.88089
| contrast | estimate | SE | df | z.ratio | p.value |
|---|---|---|---|---|---|
| Judean Highlands - Carmel | 0.0694207 | 0.0244337 | Inf | 2.841183 | 0.0067420 |
| Judean Highlands - Galilee | -0.0640337 | 0.0277188 | Inf | -2.310115 | 0.0208818 |
| Carmel - Galilee | -0.1334544 | 0.0263182 | Inf | -5.070793 | 0.0000012 |
GMA is significantly different among all three subunits, with the highest being Carmel and the lowest Galilee (post-hoc z-test for pairwise contrasts, fdr correction for 3 tests). No significant temporal trend.
Explore data
## [1] "ABUNDANCE WITHOUT RARE SPECIES"
| abundance | year_ct | site | settlements | subunit | td_sc | cos_td_rad | sin_td_rad | |
|---|---|---|---|---|---|---|---|---|
| Min. : 1.00 | Min. :2.0 | Aderet : 15 | Far : 0 | Judean Highlands:75 | Min. :-2.3697 | Min. :-0.3335 | Min. :-0.9959 | |
| 1st Qu.:10.00 | 1st Qu.:3.0 | Amatzia : 15 | Near: 0 | Carmel :75 | 1st Qu.:-0.2713 | 1st Qu.: 0.5702 | 1st Qu.:-0.8215 | |
| Median :16.00 | Median :5.0 | Bat Shlomo: 15 | NA’s:225 | Galilee :75 | Median : 0.3010 | Median : 0.7611 | Median :-0.6486 | |
| Mean :17.14 | Mean :5.2 | Eitanim : 15 | NA | NA | Mean : 0.2127 | Mean : 0.6933 | Mean :-0.6326 | |
| 3rd Qu.:21.00 | 3rd Qu.:7.0 | Elyakim : 15 | NA | NA | 3rd Qu.: 0.6444 | 3rd Qu.: 0.8521 | 3rd Qu.:-0.5234 | |
| Max. :69.00 | Max. :9.0 | Eshtaol : 15 | NA | NA | Max. : 1.6364 | Max. : 0.9947 | Max. :-0.1031 | |
| NA | NA | (Other) :135 | NA | NA | NA | NA | NA |
Two outliers with total abundance >50. Examine:
## subunit point_name datetime monitors_name
## 1: Judean Highlands Aderet KKL Plantings 3 2017-05-25 07:45:00 <NA>
## 2: Carmel Elyakim KKL Plantings 1 2019-04-26 06:07:00 Other
## richness gma abundance
## 1: 11 3.684917 54
## 2: 6 5.614404 69
Keep all plots for now.
PHI>1, hence choose negative binomial. Fit fixed and mixed models. Choose mixed model if possible, otherwise choose a model with fixed-effects only.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00396002 (tol = 0.002, component 1)
mixed model failed to converge, attempt model selection of mixed model and see if eventually it converges.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00412153 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00794915 (tol = 0.002, component 1)
## Single term deletions
##
## Model:
## abundance ~ subunit * year_ct + cos_td_rad + sin_td_rad + (1 |
## site)
## npar AIC
## <none> 1582.7
## cos_td_rad 1 1588.9
## sin_td_rad 1 1584.8
## subunit:year_ct 2 1579.3
drop subunit X year
## Single term deletions
##
## Model:
## abundance ~ subunit + year_ct + cos_td_rad + sin_td_rad + (1 |
## site)
## npar AIC
## <none> 1579.3
## subunit 2 1592.1
## year_ct 1 1577.7
## cos_td_rad 1 1585.1
## sin_td_rad 1 1581.2
drop year
## Single term deletions
##
## Model:
## abundance ~ subunit + cos_td_rad + sin_td_rad + (1 | site)
## npar AIC
## <none> 1577.7
## subunit 2 1590.6
## cos_td_rad 1 1583.8
## sin_td_rad 1 1579.3
drop sine because \(\Delta AIC<2\)
## Single term deletions
##
## Model:
## abundance ~ subunit + cos_td_rad + (1 | site)
## npar AIC
## <none> 1579.2
## subunit 2 1595.5
## cos_td_rad 1 1582.8
subunit and time of year remain. The final model:
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Negative Binomial(5.0582) ( log )
## Formula: abundance ~ subunit + cos_td_rad + (1 | site)
## Data: P.anal
##
## AIC BIC logLik deviance df.resid
## 1579.2 1599.7 -783.6 1567.2 219
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7006 -0.6340 -0.2512 0.4708 4.8965
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.001695 0.04117
## Number of obs: 225, groups: site, 15
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.66798 0.11700 22.803 < 2e-16 ***
## subunitCarmel 0.14408 0.08567 1.682 0.0926 .
## subunitGalilee -0.41092 0.08844 -4.646 3.38e-06 ***
## cos_td_rad 0.33290 0.13893 2.396 0.0166 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sbntCr sbntGl
## subunitCrml -0.390
## subunitGall -0.399 0.491
## cos_td_rad -0.852 0.021 0.047
## $site
## (Intercept)
## Aderet 0.002221368
## Amatzia 0.003288417
## Bat Shlomo -0.009378040
## Eitanim -0.016330075
## Elyakim 0.002662661
## Eshtaol -0.013511033
## Givat Yeshayahu 0.024408095
## Kabri 0.007108884
## Kerem Maharal 0.012060266
## Manara -0.010333935
## Meron -0.018844743
## Ofer 0.006270886
## Ramat Hashofet -0.011544826
## Ramot Naftali 0.015570814
## Zuriel 0.006594637
##
## with conditional variances for "site"
## $site
Interpretation of abundance model:
| Observations | 225 |
| Dependent variable | abundance |
| Type | Mixed effects generalized linear model |
| Family | Negative Binomial(5.0582) |
| Link | log |
| AIC | 1579.156 |
| BIC | 1599.653 |
| Pseudo-R² (fixed effects) | 0.524 |
| Pseudo-R² (total) | 0.537 |
| exp(Est.) | S.E. | z val. | p | |
|---|---|---|---|---|
| (Intercept) | 14.411 | 0.117 | 22.803 | 0.000 |
| subunitCarmel | 1.155 | 0.086 | 1.682 | 0.093 |
| subunitGalilee | 0.663 | 0.088 | -4.646 | 0.000 |
| cos_td_rad | 1.395 | 0.139 | 2.396 | 0.017 |
| Group | Parameter | Std. Dev. |
|---|---|---|
| site | (Intercept) | 0.041 |
| Group | # groups | ICC |
|---|---|---|
| site | 15 | 0.006 |
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands 2.90 0.0614 Inf 2.78 3.02
## Carmel 3.04 0.0602 Inf 2.92 3.16
## Galilee 2.49 0.0642 Inf 2.36 2.61
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 0.7419288
## [1] 0.154973
## [1] 0.5081987
| contrast | estimate | SE | df | z.ratio | p.value |
|---|---|---|---|---|---|
| Judean Highlands - Carmel | -0.1440769 | 0.0856729 | Inf | -1.681710 | 0.0926251 |
| Judean Highlands - Galilee | 0.4109161 | 0.0884443 | Inf | 4.646046 | 0.0000051 |
| Carmel - Galilee | 0.5549930 | 0.0878459 | Inf | 6.317801 | 0.0000000 |
significantly lower abundance in Galilee subunit compared to other two subunits (z-test post-hoc with fdr correction for 3 tests). No significant temporal trend.
Carmel and Judean highland plots have on average 8.929437 and 6.1163948 individuals more than Galilee plots, which is 74.1928811 and 6.1163948 percent higher, respectively.
## Overlapping points were shifted along the y-axis to make them visible.
##
## PIPING TO 2nd MVFACTOR
## Only the variables Curruca.melanocephala, Streptopelia.decaocto, Turdus.merula, Parus.major, Garrulus.glandarius, Troglodytes.troglodytes, Chloris.chloris, Corvus.cornix, Alectoris.chukar, Carduelis.carduelis, Cinnyris.osea, Streptopelia.turtur were included in the plot
## (the variables with highest total abundance).
## Overlapping points were shifted along the y-axis to make them visible.
##
## PIPING TO 2nd MVFACTOR
## Only the variables Curruca.melanocephala, Streptopelia.decaocto, Turdus.merula, Parus.major, Garrulus.glandarius, Troglodytes.troglodytes, Chloris.chloris, Corvus.cornix, Alectoris.chukar, Carduelis.carduelis, Cinnyris.osea, Streptopelia.turtur were included in the plot
## (the variables with highest total abundance).
Mean-variance plot: there is a strong relationship, indicating that employing GLMs is the proper way to analyze, rather than OLS (assumption of homogeneity is violated). start model specification:
## nb po
## 544.1508 621.8585
## [1] "POISSON"
## [1] "NEGATIVE BINOMIAL"
negative binomial model is better than poisson according to residuals and AIC comparison.
## nb po nb1
## 544.1508 621.8585 528.0333
The addition of the explanatory variable ‘site’ is improving the AIC of the model. stepwise selection of model:
## Single term deletions
##
## Model:
## spp_no_rare ~ subunit * year_ct + cos_td_rad + sin_td_rad + site
## Df AIC
## <none> 7392.5
## cos_td_rad 14 7424.5
## sin_td_rad 14 7409.6
## site 196 7618.1
## subunit:year_ct 28 7428.0
final model includes year, subunit, subunit X year, sampling time of year.
##
## Coefficients: (2 not defined because of singularities)
## wald value Pr(>wald)
## (Intercept) 4.673 0.033 *
## subunitCarmel 0.128 0.391
## subunitGalilee 8.317 0.211
## year_ct 9.078 0.039 *
## cos_td_rad 4.890 0.057 .
## sin_td_rad 4.764 0.081 .
## siteAmatzia 216.021 0.003 **
## siteBat Shlomo 0.433 0.255
## siteEitanim 3.908 0.177
## siteElyakim 0.361 0.256
## siteEshtaol 5.035 0.193
## siteGivat Yeshayahu 3.083 0.595
## siteKabri 183.169 0.010 **
## siteKerem Maharal 0.788 0.164
## siteManara 3.559 0.548
## siteMeron 13.655 0.116
## siteOfer 0.320 0.298
## siteRamat Hashofet Inf 0.339
## siteRamot Naftali 155.849 0.025 *
## siteZuriel 58.601 0.360
## subunitCarmel:year_ct 868.986 0.071 .
## subunitGalilee:year_ct 430.799 0.444
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Test statistic: NaN, p-value: 0.001
## Arguments:
## Test statistics calculated assuming response assumed to be uncorrelated
## P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
##
## Model: spp_no_rare ~ subunit * year_ct + cos_td_rad + sin_td_rad + site
##
## Multivariate test:
## Res.Df Df.diff Dev Pr(>Dev)
## (Intercept) 224
## subunit 222 2 225.4 0.01 **
## year_ct 221 1 27.3 0.02 *
## cos_td_rad 220 1 25.8 0.04 *
## sin_td_rad 219 1 26.7 0.04 *
## site 205 14 609.4 0.01 **
## subunit:year_ct 205 2 91.5 0.01 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Tests:
## Alectoris.chukar Carduelis.carduelis
## Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 8.156 0.11 1.022 0.59
## year_ct 0.531 0.98 0.369 0.98
## cos_td_rad 0.33 0.98 0.889 0.97
## sin_td_rad 1.35 0.91 0.853 0.95
## site 22.31 0.18 32.744 0.03
## subunit:year_ct 1.025 1.00 0.821 1.00
## Chloris.chloris Cinnyris.osea Corvus.cornix
## Dev Pr(>Dev) Dev Pr(>Dev) Dev
## (Intercept)
## subunit 7.569 0.11 2.521 0.52 20.134
## year_ct 0.002 0.98 0.729 0.95 0.381
## cos_td_rad 1.148 0.90 0.491 0.98 0.388
## sin_td_rad 0.242 0.99 3.904 0.51 0.214
## site 32.49 0.03 43.967 0.01 68.936
## subunit:year_ct 26.268 0.01 0.329 1.00 0.346
## Curruca.melanocephala Garrulus.glandarius
## Pr(>Dev) Dev Pr(>Dev) Dev
## (Intercept)
## subunit 0.01 55.321 0.01 21.225
## year_ct 0.98 0.253 0.98 2.582
## cos_td_rad 0.98 0.141 0.98 0.015
## sin_td_rad 0.99 1.283 0.91 1.559
## site 0.01 112.609 0.01 36.36
## subunit:year_ct 1.00 6.213 0.44 6.028
## Parus.major Prinia.gracilis
## Pr(>Dev) Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 0.01 7.029 0.13 13.377 0.02
## year_ct 0.75 0.79 0.95 2.431 0.75
## cos_td_rad 0.98 0.388 0.98 6.876 0.10
## sin_td_rad 0.91 0.071 0.99 0.063 0.99
## site 0.01 25.601 0.11 43.647 0.01
## subunit:year_ct 0.44 3.497 0.80 10.608 0.10
## Pycnonotus.xanthopygos Streptopelia.decaocto
## Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 28.636 0.01 22.355 0.01
## year_ct 4.077 0.39 5.457 0.21
## cos_td_rad 6.935 0.10 1.756 0.81
## sin_td_rad 2.053 0.86 2.518 0.76
## site 28.335 0.04 44.621 0.01
## subunit:year_ct 4.756 0.55 2.621 0.91
## Streptopelia.turtur Troglodytes.troglodytes
## Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 6.122 0.19 8.512 0.08
## year_ct 7.971 0.05 1.738 0.82
## cos_td_rad 1.918 0.81 0.423 0.98
## sin_td_rad 0.339 0.99 1.53 0.91
## site 37.084 0.01 66.751 0.01
## subunit:year_ct 19.455 0.01 1.953 0.92
## Turdus.merula
## Dev Pr(>Dev)
## (Intercept)
## subunit 23.453 0.01
## year_ct 0.014 0.98
## cos_td_rad 4.108 0.36
## sin_td_rad 10.699 0.03
## site 13.943 0.39
## subunit:year_ct 7.626 0.34
## Arguments:
## Test statistics calculated assuming uncorrelated response (for faster computation)
## P-value calculated using 99 iterations via PIT-trap resampling.
## (Intercept) subunitCarmel subunitGalilee
## -0.96400244 0.50323313 -3.70807125
## year_ct cos_td_rad sin_td_rad
## 0.08755241 0.49374800 -1.40328595
## siteAmatzia siteBat Shlomo siteEitanim
## -0.43973951 0.22462235 -1.61670336
## siteElyakim siteEshtaol siteGivat Yeshayahu
## -0.03748978 -1.64159091 -0.49195031
## siteKabri siteKerem Maharal siteManara
## -11.48345220 0.21183637 2.12552585
## siteMeron siteOfer siteRamat Hashofet
## 0.90924651 -0.58380540 0.68806958
## siteRamot Naftali siteZuriel subunitCarmel:year_ct
## 2.80845388 1.93215468 -0.60521788
## subunitGalilee:year_ct
## 0.08947675
## (Intercept) subunitCarmel subunitGalilee
## -0.96400397 1.19130135 -1.77591982
## year_ct cos_td_rad sin_td_rad
## 0.08755218 0.49375012 -1.40328949
## siteAmatzia siteBat Shlomo siteEitanim
## -0.43974002 -0.46344768 -1.61670474
## siteElyakim siteEshtaol siteGivat Yeshayahu
## -0.72555956 -1.64159205 -0.49195089
## siteKabri siteKerem Maharal siteManara
## -36.38941319 -0.47623381 0.19337109
## siteMeron siteOfer siteRamat Hashofet
## -1.02290839 -1.27187554 NA
## siteRamot Naftali siteZuriel subunitCarmel:year_ct
## 0.87629915 NA -0.60521784
## subunitGalilee:year_ct
## 0.08947719
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## [1] 97.33152
## [1] 0.9733152
## [1] 245.2869
## [1] 2.45287
## [1] 84.57122
## [1] 0.8457118
## NOTE: A nesting structure was detected in the fitted model:
## site %in% subunit
## subunit year_ct.trend SE df asymp.LCL asymp.UCL
## Judean Highlands 0.0876 0.0811 Inf -0.0714 0.246
## Carmel -0.5177 0.1432 Inf -0.7983 -0.237
## Galilee 0.1770 0.0817 Inf 0.0169 0.337
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## subunit year_ct.trend SE df z.ratio p.value
## Judean Highlands 0.0876 0.0811 Inf 1.080 0.2802
## Carmel -0.5177 0.1432 Inf -3.615 0.0009
## Galilee 0.1770 0.0817 Inf 2.167 0.0453
##
## Results are averaged over the levels of: site
## P value adjustment: fdr method for 3 tests
## Warning in glm.nb(formula = Streptopelia.turtur ~ subunit * year_ct +
## cos_td_rad + : alternation limit reached
## (Intercept) subunitCarmel subunitGalilee
## -3.9898684 0.3221667 -8.6448468
## year_ct cos_td_rad sin_td_rad
## -0.2506289 3.6341962 -2.4036677
## siteAmatzia siteBat Shlomo siteEitanim
## 0.4862208 -9.6212214 -12.8578634
## siteElyakim siteEshtaol siteGivat Yeshayahu
## 1.4577399 -12.9830193 0.2301571
## siteKabri siteKerem Maharal siteManara
## -6.8003372 3.2842543 -6.9377785
## siteMeron siteOfer siteRamat Hashofet
## -6.7827383 2.9002185 2.3011754
## siteRamot Naftali siteZuriel subunitCarmel:year_ct
## 6.2037641 5.6722431 -1.0065992
## subunitGalilee:year_ct
## 0.4613248
## (Intercept) subunitCarmel subunitGalilee
## -3.9900362 2.6233626 -2.9726488
## year_ct cos_td_rad sin_td_rad
## -0.2506312 3.6343556 -2.4038109
## siteAmatzia siteBat Shlomo siteEitanim
## 0.4861928 -34.3772736 -35.8295646
## siteElyakim siteEshtaol siteGivat Yeshayahu
## -0.8434370 -36.0054770 0.2301540
## siteKabri siteKerem Maharal siteManara
## -35.1184441 0.9830785 -35.2720810
## siteMeron siteOfer siteRamat Hashofet
## -35.1353042 0.5990394 NA
## siteRamot Naftali siteZuriel subunitCarmel:year_ct
## 0.5315188 NA -1.0066237
## subunitGalilee:year_ct
## 0.4613286
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type =
## if (type == : prediction from a rank-deficient fit may be misleading
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
## [26] 0 0 0 0 0 1 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
## [51] 0 1 0 1 0 0 0 0 0 0 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0
## [1] 99.98494
## [1] 0.9998494
## [1] 245.2869
## [1] 3.370521
## [1] 478.0084
## [1] 0.8269922
## NOTE: A nesting structure was detected in the fitted model:
## site %in% subunit
## subunit year_ct.trend SE df asymp.LCL asymp.UCL
## Judean Highlands -0.251 0.157 Inf -0.558 0.0572
## Carmel -1.257 0.395 Inf -2.032 -0.4826
## Galilee 0.211 0.164 Inf -0.111 0.5321
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## subunit year_ct.trend SE df z.ratio p.value
## Judean Highlands -0.251 0.157 Inf -1.596 0.1658
## Carmel -1.257 0.395 Inf -3.181 0.0044
## Galilee 0.211 0.164 Inf 1.285 0.1988
##
## Results are averaged over the levels of: site
## P value adjustment: fdr method for 3 tests
The effect of subunit interaction with year is not big. There are two species for which this interaction is significant: For Chloris chloris there are two subunits with opposing trends which are significantly different from zero. For Streptopelia turtur there is only one subunit with a temporal trend which is significantly different from zero.
Re-run model without subunit:year interaction and without site for simplification of the interpretation of results
## Single term deletions
##
## Model:
## spp_no_rare ~ subunit + year_ct + cos_td_rad + sin_td_rad
## Df AIC
## <none> 7645.4
## subunit 28 7793.5
## year_ct 14 7645.1
## cos_td_rad 14 7653.7
## sin_td_rad 14 7644.1
drop sine
## Single term deletions
##
## Model:
## spp_no_rare ~ subunit + year_ct + cos_td_rad
## Df AIC
## <none> 7644.1
## subunit 28 7803.4
## year_ct 14 7645.5
## cos_td_rad 14 7641.9
drop cosine
## Single term deletions
##
## Model:
## spp_no_rare ~ subunit + year_ct
## Df AIC
## <none> 7641.9
## subunit 28 7807.1
## year_ct 14 7641.2
year should be dropped. keep year because difference in AIC is very small (<1) final model includes subunit and year.
##
## Test statistics:
## wald value Pr(>wald)
## (Intercept) 18.376 0.001 ***
## subunitCarmel 9.569 0.001 ***
## subunitGalilee 11.415 0.001 ***
## year_ct 5.502 0.019 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Test statistic: 16, p-value: 0.001
## Arguments:
## Test statistics calculated assuming response assumed to be uncorrelated
## P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
##
## Model: spp_no_rare ~ subunit + year_ct
##
## Multivariate test:
## Res.Df Df.diff Dev Pr(>Dev)
## (Intercept) 224
## subunit 222 2 225.43 0.01 **
## year_ct 221 1 27.32 0.02 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Tests:
## Alectoris.chukar Cinnyris.osea Prinia.gracilis
## Dev Pr(>Dev) Dev Pr(>Dev) Dev
## (Intercept)
## subunit 8.156 0.11 2.521 0.52 13.377
## year_ct 0.531 0.99 0.729 0.99 2.431
## Pycnonotus.xanthopygos Streptopelia.decaocto
## Pr(>Dev) Dev Pr(>Dev) Dev
## (Intercept)
## subunit 0.02 28.636 0.01 22.355
## year_ct 0.73 4.077 0.45 5.457
## Streptopelia.turtur Carduelis.carduelis
## Pr(>Dev) Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 0.01 6.122 0.21 1.022 0.66
## year_ct 0.21 7.971 0.06 0.369 0.99
## Chloris.chloris Corvus.cornix
## Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 7.569 0.15 20.134 0.01
## year_ct 0.002 0.99 0.381 0.99
## Curruca.melanocephala Garrulus.glandarius
## Dev Pr(>Dev) Dev Pr(>Dev)
## (Intercept)
## subunit 55.321 0.01 21.225 0.01
## year_ct 0.253 0.99 2.582 0.71
## Parus.major Troglodytes.troglodytes Turdus.merula
## Dev Pr(>Dev) Dev Pr(>Dev) Dev
## (Intercept)
## subunit 7.029 0.15 8.512 0.10 23.453
## year_ct 0.79 0.99 1.738 0.88 0.014
##
## Pr(>Dev)
## (Intercept)
## subunit 0.01
## year_ct 0.99
## Arguments:
## Test statistics calculated assuming uncorrelated response (for faster computation)
## P-value calculated using 99 iterations via PIT-trap resampling.
Factors year and subunit have statistically significant effects on community composition.
## Loading required package: ggnewscale
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## [1] "black arrow is median of synanthrope/invasive\n\n"
## [1] "arrow is median of\nsynanthrope / invasive in black\n"
## Warning in glm.nb(formula = paste(spec_var_name, "subunit + year_ct", sep =
## "~"), : alternation limit reached
## (Intercept) subunitCarmel subunitGalilee year_ct
## -0.06200274 0.29046887 -0.57347255 -0.28736804
## (Intercept) subunitGalilee year_ct
## 0.3230341 -0.6299812 -0.3306849
## [1] "RESULTS FOR Streptopelia turtur"
## [1] "P-values"
## term p
## 1: (Intercept) NA
## 2: subunit 0.21
## 3: year_ct 0.06
## [1] "change in Streptopelia turtur abundance over monitoring period: -90.1213519975731 %"
## (Intercept) subunitCarmel subunitGalilee year_ct
## -1.92332039 1.89209666 1.73679961 -0.03860959
## (Intercept) subunitCarmel subunitGalilee
## -2.120264 1.897120 1.734601
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands -2.120 0.385 Inf -2.875 -1.3652
## Carmel -0.223 0.232 Inf -0.678 0.2321
## Galilee -0.386 0.239 Inf -0.853 0.0818
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 17.70367
## [1] 566.5867
## [1] 466.3262
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel -1.897 0.450 Inf -4.217 0.0001
## Judean Highlands - Galilee -1.735 0.453 Inf -3.828 0.0002
## Carmel - Galilee 0.163 0.333 Inf 0.488 0.6255
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests
## (Intercept) subunitCarmel subunitGalilee year_ct
## 1.59022736 -0.02680635 -1.02220624 -0.01100033
## (Intercept) subunitCarmel subunitGalilee
## 1.53183667 -0.02332467 -1.02101104
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands 1.532 0.0867 Inf 1.362 1.702
## Carmel 1.509 0.0871 Inf 1.338 1.679
## Galilee 0.511 0.1124 Inf 0.291 0.731
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 171.2851
## [1] 2.326654
## [1] 177.5969
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel 0.0233 0.123 Inf 0.190 0.8495
## Judean Highlands - Galilee 1.0210 0.142 Inf 7.193 <.0001
## Carmel - Galilee 0.9977 0.142 Inf 7.016 <.0001
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests
## (Intercept) subunitCarmel subunitGalilee year_ct
## 0.4338510 0.2170025 -0.9304102 -0.0648824
## (Intercept) subunitCarmel subunitGalilee
## 0.1251631 0.1823216 -0.9461437
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands 0.125 0.154 Inf -0.1769 0.427
## Carmel 0.307 0.148 Inf 0.0182 0.597
## Galilee -0.821 0.206 Inf -1.2240 -0.418
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 208.9471
## [1] 19.96142
## [1] 157.5387
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel -0.182 0.213 Inf -0.854 0.3929
## Judean Highlands - Galilee 0.946 0.257 Inf 3.682 0.0003
## Carmel - Galilee 1.128 0.253 Inf 4.458 <.0001
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests
## (Intercept) subunitCarmel subunitGalilee year_ct
## -1.7682269 -2.6590856 -1.2099970 0.1569255
## (Intercept) subunitCarmel subunitGalilee
## -0.8209806 -2.8033604 -1.1939225
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands -0.821 0.366 Inf -1.54 -0.104
## Carmel -3.624 0.777 Inf -5.15 -2.102
## Galilee -2.015 0.451 Inf -2.90 -1.131
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 399.7811
## [1] 1549.405
## [1] 230.0256
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel 2.80 0.858 Inf 3.266 0.0033
## Judean Highlands - Galilee 1.19 0.581 Inf 2.057 0.0596
## Carmel - Galilee -1.61 0.898 Inf -1.792 0.0731
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests
## (Intercept) subunitCarmel subunitGalilee year_ct
## -1.2783990 -2.7997326 -1.6689719 0.1565226
## (Intercept) subunitCarmel subunitGalilee
## -0.3856625 -2.8332133 -1.6292405
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands -0.386 0.243 Inf -0.863 0.0912
## Carmel -3.219 0.611 Inf -4.416 -2.0220
## Galilee -2.015 0.374 Inf -2.747 -1.2826
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 233.3424
## [1] 1599.637
## [1] 409.8773
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel 2.83 0.657 Inf 4.310 <.0001
## Judean Highlands - Galilee 1.63 0.446 Inf 3.654 0.0004
## Carmel - Galilee -1.20 0.716 Inf -1.682 0.0926
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests
## (Intercept) subunitCarmel subunitGalilee year_ct
## 1.63780172 0.23468638 -0.55918725 -0.06401215
## (Intercept) subunitCarmel subunitGalilee
## 1.3244190 0.2188792 -0.5667333
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands 1.324 0.111 Inf 1.107 1.542
## Carmel 1.543 0.108 Inf 1.332 1.755
## Galilee 0.758 0.123 Inf 0.517 0.998
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 119.2407
## [1] 24.48313
## [1] 76.12081
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel -0.219 0.155 Inf -1.414 0.1573
## Judean Highlands - Galilee 0.567 0.165 Inf 3.427 0.0009
## Carmel - Galilee 0.786 0.163 Inf 4.812 <.0001
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests
## (Intercept) subunitCarmel subunitGalilee year_ct
## 1.093806986 0.385184896 -0.271365662 0.002667568
## (Intercept) subunitCarmel subunitGalilee
## 1.1074619 0.3861910 -0.2716584
## subunit emmean SE df asymp.LCL asymp.UCL
## Judean Highlands 1.107 0.0957 Inf 0.920 1.29
## Carmel 1.494 0.0880 Inf 1.321 1.67
## Galilee 0.836 0.1026 Inf 0.635 1.04
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## [1] 93.09266
## [1] 47.25565
## [1] 31.12751
## contrast estimate SE df z.ratio p.value
## Judean Highlands - Carmel -0.386 0.130 Inf -2.971 0.0045
## Judean Highlands - Galilee 0.272 0.140 Inf 1.936 0.0528
## Carmel - Galilee 0.658 0.135 Inf 4.867 <.0001
##
## Results are given on the log (not the response) scale.
## P value adjustment: fdr method for 3 tests