Bangkitkan data
X<-cbind(1,runif(100));head(X)#matriks X
## [,1] [,2]
## [1,] 1 0.83005264
## [2,] 1 0.05850593
## [3,] 1 0.30078041
## [4,] 1 0.69407411
## [5,] 1 0.41167048
## [6,] 1 0.10532298
theta.true<-c(2,3,1);theta.true#B0,B1,sigma2
## [1] 2 3 1
y<-X%*%theta.true[1:2] + rnorm(100);head(y)#vektor y
## [,1]
## [1,] 4.349805
## [2,] 2.206116
## [3,] 3.422500
## [4,] 4.089192
## [5,] 3.131843
## [6,] 2.544897
Likelihood-OLS
ols.lf<-function(theta,y,X){
n<-nrow(X)
k<-ncol(X)
beta<-theta[1:k]
sigma2<-theta[k+1]
e<-y-X%*%beta
logl<- -.5*n*log(2*pi)-.5*n*log(sigma2)-
((t(e)%*%e)/(2*sigma2))
return(-logl)
}
Pendugaan dengan optim()
p<-optim(c(1,1,1),ols.lf,method="BFGS",hessian=T,y=y,X=X);p
## $par
## [1] 1.943245 3.169456 0.823392
##
## $value
## [1] 132.1771
##
## $counts
## function gradient
## 34 14
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1] [,2] [,3]
## [1,] 121.448838762 6.355896e+01 -8.326850e-04
## [2,] 63.558960925 4.308710e+01 9.576695e-05
## [3,] -0.000832685 9.576695e-05 7.374800e+01