1. Initial setup and Configure the data set.
  2. Load the data set file in variable hotel_data files
  3. Data set - Hotels : This data comes from an open hotel booking demand dataset from Antonio, Almeida and Nunes.

This section is about the Numeric summary for two columns - lead_time and stays_in_weekend_nights.

numeric_summary <- summary(hotel_data[c('lead_time', 'stays_in_weekend_nights')])

This section is about the display of Numeric summary of two columns - lead_time and stays_in_weekend_nights.

numeric_summary
##    lead_time   stays_in_weekend_nights
##  Min.   :  0   Min.   : 0.0000        
##  1st Qu.: 18   1st Qu.: 0.0000        
##  Median : 69   Median : 1.0000        
##  Mean   :104   Mean   : 0.9276        
##  3rd Qu.:160   3rd Qu.: 2.0000        
##  Max.   :737   Max.   :19.0000

This section is about to calculate the unique values and counts for categorical columns -meal and market_segment.

categorical_summary1 <- table(hotel_data$meal)
categorical_summary2 <- table(hotel_data$market_segment)

This section is about to display the unique values and counts for categorical columns -meal and market_segment.

categorical_summary1
## 
##        BB        FB        HB        SC Undefined 
##     92310       798     14463     10650      1169
categorical_summary2
## 
##      Aviation Complementary     Corporate        Direct        Groups 
##           237           743          5295         12606         19811 
## Offline TA/TO     Online TA     Undefined 
##         24219         56477             2

This section is about to calculate and display the aggregating lead time impact on cancellations

lead_time_cancellation_aggregate <- aggregate(is_canceled ~ lead_time, data = hotel_data, FUN = function(x) mean(x == 1))
lead_time_cancellation_aggregate
##     lead_time is_canceled
## 1           0  0.06776990
## 2           1  0.09277457
## 3           2  0.10294828
## 4           3  0.10022026
## 5           4  0.10262391
## 6           5  0.13162939
## 7           6  0.13979239
## 8           7  0.12922615
## 9           8  0.19595782
## 10          9  0.22076613
## 11         10  0.22745902
## 12         11  0.20947867
## 13         12  0.25764597
## 14         13  0.20462850
## 15         14  0.22279793
## 16         15  0.30035757
## 17         16  0.24840764
## 18         17  0.26560726
## 19         18  0.31598063
## 20         19  0.31108462
## 21         20  0.29066667
## 22         21  0.28171091
## 23         22  0.30410184
## 24         23  0.32970451
## 25         24  0.26766917
## 26         25  0.32006126
## 27         26  0.35022355
## 28         27  0.37750385
## 29         28  0.41341463
## 30         29  0.29494382
## 31         30  0.36874052
## 32         31  0.27591241
## 33         32  0.33043478
## 34         33  0.36391913
## 35         34  0.39855072
## 36         35  0.32366412
## 37         36  0.29713424
## 38         37  0.47399703
## 39         38  0.48521739
## 40         39  0.33878158
## 41         40  0.31994460
## 42         41  0.32125206
## 43         42  0.34267241
## 44         43  0.32567850
## 45         44  0.39968404
## 46         45  0.37430168
## 47         46  0.36363636
## 48         47  0.27288732
## 49         48  0.26482213
## 50         49  0.39039666
## 51         50  0.40037951
## 52         51  0.33879781
## 53         52  0.43908046
## 54         53  0.29433962
## 55         54  0.45338983
## 56         55  0.31304348
## 57         56  0.52366864
## 58         57  0.30853392
## 59         58  0.37905237
## 60         59  0.41346154
## 61         60  0.38761468
## 62         61  0.43469786
## 63         62  0.38888889
## 64         63  0.31909548
## 65         64  0.32624113
## 66         65  0.43526786
## 67         66  0.40128755
## 68         67  0.41002278
## 69         68  0.46631206
## 70         69  0.40501792
## 71         70  0.32031250
## 72         71  0.47281324
## 73         72  0.35781544
## 74         73  0.37562189
## 75         74  0.45472062
## 76         75  0.41647059
## 77         76  0.35327635
## 78         77  0.38095238
## 79         78  0.44270833
## 80         79  0.38375350
## 81         80  0.35227273
## 82         81  0.37500000
## 83         82  0.40966921
## 84         83  0.27777778
## 85         84  0.24347826
## 86         85  0.40988372
## 87         86  0.41431670
## 88         87  0.56444444
## 89         88  0.43526786
## 90         89  0.39047619
## 91         90  0.26962457
## 92         91  0.40718563
## 93         92  0.56235828
## 94         93  0.46857143
## 95         94  0.38438438
## 96         95  0.45408163
## 97         96  0.37228261
## 98         97  0.44101124
## 99         98  0.37380952
## 100        99  0.50465116
## 101       100  0.45244957
## 102       101  0.45142857
## 103       102  0.44104803
## 104       103  0.52519894
## 105       104  0.57142857
## 106       105  0.57524272
## 107       106  0.58823529
## 108       107  0.30566038
## 109       108  0.40449438
## 110       109  0.44444444
## 111       110  0.38720539
## 112       111  0.46246246
## 113       112  0.38770686
## 114       113  0.62198391
## 115       114  0.40000000
## 116       115  0.40000000
## 117       116  0.36962025
## 118       117  0.40067340
## 119       118  0.28424658
## 120       119  0.30578512
## 121       120  0.44047619
## 122       121  0.42424242
## 123       122  0.29513889
## 124       123  0.40579710
## 125       124  0.41233766
## 126       125  0.43319838
## 127       126  0.42400000
## 128       127  0.40692641
## 129       128  0.40460526
## 130       129  0.50841751
## 131       130  0.49158249
## 132       131  0.44666667
## 133       132  0.30115830
## 134       133  0.29433962
## 135       134  0.48697917
## 136       135  0.51398601
## 137       136  0.35714286
## 138       137  0.44755245
## 139       138  0.35797665
## 140       139  0.50226244
## 141       140  0.39880952
## 142       141  0.39781022
## 143       142  0.47876448
## 144       143  0.51827243
## 145       144  0.47031963
## 146       145  0.38429752
## 147       146  0.43388430
## 148       147  0.48165138
## 149       148  0.61151079
## 150       149  0.54871795
## 151       150  0.51552795
## 152       151  0.41643836
## 153       152  0.32051282
## 154       153  0.43801653
## 155       154  0.27374302
## 156       155  0.51562500
## 157       156  0.52614379
## 158       157  0.46122449
## 159       158  0.52160494
## 160       159  0.28474576
## 161       160  0.38164251
## 162       161  0.60434783
## 163       162  0.50825083
## 164       163  0.47465438
## 165       164  0.46089385
## 166       165  0.40082645
## 167       166  0.58585859
## 168       167  0.39267016
## 169       168  0.51552795
## 170       169  0.44213650
## 171       170  0.37142857
## 172       171  0.29047619
## 173       172  0.43027888
## 174       173  0.46046512
## 175       174  0.47908745
## 176       175  0.54642857
## 177       176  0.38750000
## 178       177  0.46825397
## 179       178  0.65846154
## 180       179  0.50431034
## 181       180  0.41111111
## 182       181  0.52203390
## 183       182  0.48387097
## 184       183  0.50511945
## 185       184  0.50495050
## 186       185  0.36190476
## 187       186  0.55870445
## 188       187  0.47328244
## 189       188  0.64143426
## 190       189  0.41095890
## 191       190  0.39375000
## 192       191  0.27011494
## 193       192  0.25938567
## 194       193  0.47089947
## 195       194  0.31666667
## 196       195  0.50267380
## 197       196  0.39285714
## 198       197  0.40229885
## 199       198  0.56000000
## 200       199  0.53301887
## 201       200  0.50349650
## 202       201  0.47586207
## 203       202  0.37272727
## 204       203  0.34358974
## 205       204  0.40251572
## 206       205  0.57792208
## 207       206  0.43150685
## 208       207  0.40094340
## 209       208  0.35078534
## 210       209  0.42424242
## 211       210  0.55392157
## 212       211  0.60975610
## 213       212  0.52525253
## 214       213  0.47194719
## 215       214  0.40506329
## 216       215  0.32535885
## 217       216  0.50574713
## 218       217  0.37623762
## 219       218  0.52380952
## 220       219  0.52800000
## 221       220  0.27516779
## 222       221  0.41704036
## 223       222  0.45695364
## 224       223  0.43884892
## 225       224  0.41406250
## 226       225  0.26206897
## 227       226  0.53684211
## 228       227  0.43956044
## 229       228  0.42105263
## 230       229  0.63541667
## 231       230  0.44444444
## 232       231  0.43478261
## 233       232  0.42168675
## 234       233  0.62416107
## 235       234  0.40579710
## 236       235  0.50649351
## 237       236  0.31333333
## 238       237  0.43750000
## 239       238  0.69841270
## 240       239  0.53246753
## 241       240  0.66896552
## 242       241  0.38461538
## 243       242  0.50943396
## 244       243  0.55769231
## 245       244  0.71140940
## 246       245  0.79000000
## 247       246  0.47674419
## 248       247  0.54854369
## 249       248  0.35365854
## 250       249  0.47169811
## 251       250  0.59340659
## 252       251  0.50000000
## 253       252  0.32432432
## 254       253  0.46666667
## 255       254  0.39560440
## 256       255  0.42372881
## 257       256  0.15853659
## 258       257  0.23484848
## 259       258  0.71034483
## 260       259  0.77058824
## 261       260  0.71428571
## 262       261  0.53333333
## 263       262  0.69047619
## 264       263  0.50000000
## 265       264  0.46969697
## 266       265  0.51304348
## 267       266  0.59210526
## 268       267  0.86290323
## 269       268  0.58974359
## 270       269  0.54216867
## 271       270  0.53043478
## 272       271  0.27472527
## 273       272  0.60839161
## 274       273  0.54375000
## 275       274  0.73600000
## 276       275  0.81707317
## 277       276  0.63758389
## 278       277  0.79559748
## 279       278  0.80434783
## 280       279  0.90909091
## 281       280  0.70886076
## 282       281  0.84426230
## 283       282  0.44303797
## 284       283  0.69105691
## 285       284  0.68750000
## 286       285  0.51470588
## 287       286  0.64021164
## 288       287  0.22058824
## 289       288  0.64545455
## 290       289  0.54347826
## 291       290  0.75229358
## 292       291  0.43333333
## 293       292  0.39285714
## 294       293  0.72727273
## 295       294  0.66666667
## 296       295  0.82407407
## 297       296  0.31666667
## 298       297  0.57692308
## 299       298  0.51020408
## 300       299  0.84090909
## 301       300  0.75268817
## 302       301  0.55789474
## 303       302  0.89115646
## 304       303  0.68888889
## 305       304  0.90055249
## 306       305  0.85714286
## 307       306  0.55882353
## 308       307  0.70370370
## 309       308  0.56896552
## 310       309  0.75961538
## 311       310  0.51111111
## 312       311  0.83950617
## 313       312  0.75581395
## 314       313  0.87654321
## 315       314  0.86363636
## 316       315  0.75000000
## 317       316  0.35500000
## 318       317  0.80412371
## 319       318  0.67346939
## 320       319  0.65714286
## 321       320  0.31746032
## 322       321  0.82812500
## 323       322  0.57000000
## 324       323  0.85810811
## 325       324  0.50000000
## 326       325  0.82352941
## 327       326  0.63829787
## 328       327  0.52272727
## 329       328  0.46575342
## 330       329  0.74285714
## 331       330  0.83168317
## 332       331  0.68750000
## 333       332  0.82000000
## 334       333  0.86440678
## 335       334  0.85185185
## 336       335  0.62608696
## 337       336  0.49700599
## 338       337  0.73913043
## 339       338  0.47727273
## 340       339  0.62500000
## 341       340  0.80000000
## 342       341  0.88095238
## 343       342  0.71724138
## 344       343  0.33333333
## 345       344  0.92537313
## 346       345  0.35714286
## 347       346  0.30188679
## 348       347  0.75000000
## 349       348  0.62857143
## 350       349  0.74193548
## 351       350  0.92857143
## 352       351  0.81372549
## 353       352  0.45161290
## 354       353  0.80000000
## 355       354  0.44444444
## 356       355  0.87500000
## 357       356  0.87096774
## 358       357  1.00000000
## 359       358  0.97260274
## 360       359  0.56818182
## 361       360  0.85185185
## 362       361  0.70000000
## 363       362  0.00000000
## 364       363  0.71428571
## 365       364  0.47852761
## 366       365  0.83076923
## 367       366  0.33333333
## 368       367  0.80000000
## 369       368  0.82500000
## 370       370  0.00000000
## 371       371  1.00000000
## 372       372  1.00000000
## 373       373  0.93103448
## 374       374  0.95238095
## 375       375  0.50000000
## 376       376  0.00000000
## 377       377  0.22471910
## 378       378  1.00000000
## 379       379  0.92647059
## 380       380  1.00000000
## 381       381  0.60000000
## 382       382  0.00000000
## 383       383  0.34722222
## 384       384  0.92000000
## 385       385  0.72413793
## 386       386  0.33333333
## 387       387  1.00000000
## 388       388  0.00000000
## 389       389  0.33333333
## 390       390  0.25000000
## 391       391  1.00000000
## 392       393  1.00000000
## 393       394  0.66666667
## 394       395  0.62962963
## 395       396  0.21176471
## 396       397  0.05882353
## 397       398  1.00000000
## 398       399  0.50000000
## 399       400  0.00000000
## 400       403  1.00000000
## 401       405  0.48837209
## 402       406  0.33333333
## 403       407  0.93103448
## 404       408  0.90909091
## 405       409  0.16000000
## 406       410  1.00000000
## 407       411  1.00000000
## 408       412  1.00000000
## 409       414  0.39047619
## 410       418  0.41666667
## 411       419  1.00000000
## 412       420  1.00000000
## 413       422  0.65517241
## 414       423  0.31481481
## 415       424  0.00000000
## 416       426  1.00000000
## 417       429  0.06666667
## 418       433  1.00000000
## 419       434  0.18518519
## 420       435  1.00000000
## 421       437  1.00000000
## 422       440  1.00000000
## 423       443  1.00000000
## 424       444  1.00000000
## 425       445  0.00000000
## 426       447  1.00000000
## 427       448  0.19230769
## 428       450  1.00000000
## 429       451  0.69696970
## 430       454  0.96969697
## 431       457  0.25000000
## 432       458  1.00000000
## 433       460  0.00000000
## 434       461  1.00000000
## 435       462  0.54347826
## 436       463  0.00000000
## 437       464  0.86206897
## 438       465  0.48387097
## 439       467  1.00000000
## 440       468  0.71428571
## 441       471  1.00000000
## 442       475  1.00000000
## 443       476  0.42307692
## 444       478  0.84615385
## 445       479  0.39393939
## 446       482  1.00000000
## 447       489  1.00000000
## 448       490  1.00000000
## 449       493  1.00000000
## 450       496  1.00000000
## 451       503  1.00000000
## 452       504  0.19230769
## 453       507  1.00000000
## 454       510  1.00000000
## 455       517  1.00000000
## 456       518  0.15384615
## 457       521  1.00000000
## 458       524  1.00000000
## 459       531  1.00000000
## 460       532  0.00000000
## 461       538  1.00000000
## 462       542  0.00000000
## 463       545  1.00000000
## 464       552  1.00000000
## 465       559  1.00000000
## 466       566  1.00000000
## 467       573  1.00000000
## 468       580  1.00000000
## 469       587  1.00000000
## 470       594  1.00000000
## 471       601  1.00000000
## 472       605  1.00000000
## 473       608  1.00000000
## 474       615  1.00000000
## 475       622  1.00000000
## 476       626  1.00000000
## 477       629  1.00000000
## 478       709  0.00000000
## 479       737  0.00000000

This section is about to calculate and display the aggregating effect of meal type on customer satisfaction.

meal_satisfaction_aggregate <- aggregate(adr ~ meal, data = hotel_data, FUN = mean)
meal_satisfaction_aggregate
##        meal       adr
## 1        BB  99.40704
## 2        FB 109.04048
## 3        HB 120.30704
## 4        SC  98.29587
## 5 Undefined  91.94831

Including Plot #1

This section is about the graph for the ‘Lead Time Distribution’


## Including Plot #2

This section is about the graph for the ‘Correlation between Lead Time and Cancellations’

lead_time_cancellation_plot <- ggplot(hotel_data, aes(x = lead_time, fill = factor(is_canceled))) +
  geom_density(alpha = 0.7) +
  labs(title = "Correlation between Lead Time and Cancellations",
       x = "Lead Time (days)",
       y = "Density",
       fill = "Cancellation") +
  theme_minimal()

# Display the lead_time_cancellation_plot plot
lead_time_cancellation_plot

##Booking Pattern and Lead Time
# Question : How does the lead time booking and arrival vary across diff type of meal (meal column) and market segments ( market_segment column)
# Reasoning: By having the lead time pattern, Meal and market segments can be associated and marketting and operational planning can be strategiyes accordingly.
##Lead Time Impact on cancellation
# How does the lead time - number of days and arrival , correlate with the likehood of cancellation
# Reasoning: By understanding the relationship between lead time and cancellation , you can gain insights into whether customer are more likehood to cencel reservation made well in advance or closure to the avival date so that marketting and operational planning can be strategiyes accordingly.
## Customer preference across market segment
# How do cusomer prefernce like booking changes, special request etc. vary across different market segment like online travel agency and corporate.
# Reasoning:Exploring how customer behaviour differs among market segment can guide targets market segment and improves Services based on unique needs and preference of each segment.

Thank You!!!