Data

load("merged_data.RData")

merged_data <- merged_data %>%
    mutate(classth = ifelse(is.na(featurew_class), 0, featurew_class),
        classtwo = ifelse(is.na(totalw_class), 0, totalw_class))

vac_comp_all

model <- glm(vac_comp_all ~factor(classth)+sexident3+race+age, family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_comp_all ~ factor(classth) + sexident3 + race + 
##     age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -2.22120    0.59656  -3.723 0.000197 ***
## factor(classth)1  0.49288    0.13876   3.552 0.000382 ***
## factor(classth)2  0.30085    0.37233   0.808 0.419092    
## factor(classth)3  0.65253    0.17956   3.634 0.000279 ***
## sexident3        -0.11792    0.09268  -1.272 0.203238    
## race             -0.06161    0.03028  -2.034 0.041924 *  
## age               0.03073    0.02527   1.216 0.223956    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 647.77  on 1221  degrees of freedom
## Residual deviance: 621.46  on 1215  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 635.46
## 
## Number of Fisher Scoring iterations: 6
odds_ratios <- exp(coef(model))
print(odds_ratios)
##      (Intercept) factor(classth)1 factor(classth)2 factor(classth)3 
##        0.1084784        1.6370211        1.3510004        1.9203880 
##        sexident3             race              age 
##        0.8887632        0.9402535        1.0312042
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                         OR      2.5 %    97.5 %
## (Intercept)      0.1084784 0.03274958 0.3475664
## factor(classth)1 1.6370211 1.25543860 2.1669016
## factor(classth)2 1.3510004 0.60415750 2.6602754
## factor(classth)3 1.9203880 1.35021992 2.7353872
## sexident3        0.8887632 0.73723757 1.0614893
## race             0.9402535 0.88409909 0.9961046
## age              1.0312042 0.98146154 1.0846031
model <- glm(vac_comp_all ~factor(classtwo)+sexident3+race+age,
    family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_comp_all ~ factor(classtwo) + sexident3 + race + 
##     age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -2.17152    0.59429  -3.654 0.000258 ***
## factor(classtwo)1  0.50724    0.14030   3.615 0.000300 ***
## factor(classtwo)2  0.54515    0.16342   3.336 0.000850 ***
## sexident3         -0.11904    0.09270  -1.284 0.199072    
## race              -0.06288    0.03022  -2.080 0.037497 *  
## age                0.02869    0.02517   1.140 0.254337    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 647.77  on 1221  degrees of freedom
## Residual deviance: 622.88  on 1216  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 634.88
## 
## Number of Fisher Scoring iterations: 6
odds_ratios <- exp(coef(model))
print(odds_ratios)
##       (Intercept) factor(classtwo)1 factor(classtwo)2         sexident3 
##         0.1140037         1.6606945         1.7248751         0.8877727 
##              race               age 
##         0.9390589         1.0291097
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                          OR      2.5 %    97.5 %
## (Intercept)       0.1140037 0.03463712 0.3633420
## factor(classtwo)1 1.6606945 1.26945383 2.2042810
## factor(classtwo)2 1.7248751 1.25491718 2.3859373
## sexident3         0.8877727 0.73637578 1.0603393
## race              0.9390589 0.88306612 0.9947287
## age               1.0291097 0.97966908 1.0821213

vac_init_all

model <- glm(vac_init_all ~factor(classth)+sexident3+race+age, family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_init_all ~ factor(classth) + sexident3 + race + 
##     age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      -0.609956   0.396394  -1.539   0.1239  
## factor(classth)1  0.203339   0.083531   2.434   0.0149 *
## factor(classth)2 -0.264528   0.269531  -0.981   0.3264  
## factor(classth)3  0.315595   0.123962   2.546   0.0109 *
## sexident3        -0.057956   0.059964  -0.967   0.3338  
## race             -0.027697   0.018840  -1.470   0.1415  
## age               0.007293   0.017000   0.429   0.6679  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1542.4  on 1221  degrees of freedom
## Residual deviance: 1527.5  on 1215  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 1541.5
## 
## Number of Fisher Scoring iterations: 4
odds_ratios <- exp(coef(model))
print(odds_ratios)
##      (Intercept) factor(classth)1 factor(classth)2 factor(classth)3 
##        0.5433748        1.2254882        0.7675684        1.3710742 
##        sexident3             race              age 
##        0.9436913        0.9726831        1.0073195
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                         OR     2.5 %   97.5 %
## (Intercept)      0.5433748 0.2496139 1.179161
## factor(classth)1 1.2254882 1.0407811 1.444082
## factor(classth)2 0.7675684 0.4435332 1.282254
## factor(classth)3 1.3710742 1.0748088 1.747561
## sexident3        0.9436913 0.8383069 1.061205
## race             0.9726831 0.9370776 1.009262
## age              1.0073195 0.9743462 1.041512
model <- glm(vac_init_all ~factor(classtwo)+sexident3+race+age, family = binomial(link = "probit"), data = merged_data)
summary(model)
## 
## Call:
## glm(formula = vac_init_all ~ factor(classtwo) + sexident3 + race + 
##     age, family = binomial(link = "probit"), data = merged_data)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)       -0.568985   0.395505  -1.439   0.1503  
## factor(classtwo)1  0.203705   0.085109   2.393   0.0167 *
## factor(classtwo)2  0.221161   0.106746   2.072   0.0383 *
## sexident3         -0.056179   0.059920  -0.938   0.3485  
## race              -0.028282   0.018788  -1.505   0.1322  
## age                0.005398   0.016969   0.318   0.7504  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1542.4  on 1221  degrees of freedom
## Residual deviance: 1532.0  on 1216  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 1544
## 
## Number of Fisher Scoring iterations: 4
odds_ratios <- exp(coef(model))
print(odds_ratios)
##       (Intercept) factor(classtwo)1 factor(classtwo)2         sexident3 
##         0.5660996         1.2259363         1.2475238         0.9453696 
##              race               age 
##         0.9721141         1.0054130
exp(cbind(OR = coef(model), confint(model)))
## Waiting for profiling to be done...
##                          OR     2.5 %   97.5 %
## (Intercept)       0.5660996 0.2606018 1.226134
## factor(classtwo)1 1.2259363 1.0379249 1.449002
## factor(classtwo)2 1.2475238 1.0117580 1.537683
## sexident3         0.9453696 0.8399326 1.062936
## race              0.9721141 0.9366107 1.008586
## age               1.0054130 0.9725670 1.039462