library(readxl)
library(readr)
## Warning: package 'readr' was built under R version 4.3.2
data <- read.csv("C:\\Users\\Muhammad Rizqa Salas\\Downloads\\data liver.csv", sep=";")
```r
y<-data$Y
x1<-data$X1
x2<-data$X2
x3<-data$X3
x4<-data$X4
x5<-data$X5
x6<-data$X6
data<-data.frame(cbind(y,x1,x2,x3,x4,x5,x6))
head(data)
## y x1 x2 x3 x4 x5 x6
## 1 158.76 16.36 8.90 3.47 6.02 57.42 1.11
## 2 197.19 26.68 21.22 3.53 12.07 61.38 1.36
## 3 144.73 12.49 16.62 2.00 8.88 67.42 1.47
## 4 140.06 8.45 22.86 6.71 7.46 69.94 1.31
## 5 129.71 10.19 14.23 4.75 2.06 65.68 1.25
## 6 162.59 19.53 17.35 1.95 7.54 59.63 1.14
n<-nrow(data)
n
## [1] 36
p<-ncol(data)
p
## [1] 7
plot(x1,y)
summary(y)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 120.9 143.9 160.7 169.7 191.8 247.4
boxplot(y)
summary(x1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.550 8.502 12.265 14.680 19.810 35.410
b1<-(sum(x1*y)-sum(x1)*sum(y)/n)/(sum(x1^2)-(sum(x1)^2/n))
b1
## [1] 2.10446
b0<-mean(y)-b1*mean(x1)
b0
## [1] 138.8326
r<-(sum(x1*y)-sum(x1)*sum(y)/n)/
sqrt((sum(x1^2)-(sum(x1)^2/n))*(sum(y^2)-(sum(y)^2/n)))
Koef_det<-r^2
Koef_det
## [1] 0.2243414
Adj_R2<-1-((1-Koef_det)*(n-1)/(n-1-1))
Adj_R2
## [1] 0.2015279
galat<-y-(b0+b1*x1)
ragam_galat<-sum(galat^2)/(n-2)
se_b1<-sqrt(ragam_galat/sum((x1-mean(x1))^2))
se_b1
## [1] 0.6710916
se_b0<-sqrt(ragam_galat*(1/n+mean(x1)^2/sum((x1-mean(x1))^2)))
se_b0
## [1] 11.0032
t_b0<-b0/se_b0
t_b0
## [1] 12.61748
t_b1<-b1/se_b1
t_b1
## [1] 3.135875
2*pt(-abs(t_b0 ),df<-n-2)
## [1] 2.215576e-14
2*pt(-abs(t_b1 ),df<-n-2)
## [1] 0.00352412
galat<-y-(b0+b1*x1)
JKG <- sum((y - (b0+b1*x1))^2)
JKReg <- sum(((b0+b1*x1)- mean(y))^2)
JKT <- sum((y - mean(y))^2)
JKT <- JKReg+JKG
dbReg<-1
dbg<-n-2
dbt<-n-1
Fhit<-(JKReg/dbReg)/(JKG/dbg)
Fhit
## [1] 9.833715
P.value<-1-pf(Fhit, dbReg, dbg, lower.tail <- F)
P.value
## [1] 0.00352412
model<-lm(y~x1,data<-data)
summary(model)
##
## Call:
## lm(formula = y ~ x1, data = data <- data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.25 -17.37 -4.84 13.90 67.96
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 138.8326 11.0032 12.617 2.22e-14 ***
## x1 2.1045 0.6711 3.136 0.00352 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.4 on 34 degrees of freedom
## Multiple R-squared: 0.2243, Adjusted R-squared: 0.2015
## F-statistic: 9.834 on 1 and 34 DF, p-value: 0.003524
anova(model)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x1 1 8501.9 8501.9 9.8337 0.003524 **
## Residuals 34 29395.4 864.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Nilai Y = 143.8205 + 2.243073X2 menunjukkan bahwa b0, atau konstanta, adalah 143.8205. Ini berarti bahwa jika tidak ada pengaruh dari faktor lain, nilai variabel dependen (y) akan menjadi 143.8205. Nilai b1 menunjukkan bahwa jika x berubah satu unit, perkiraan nilai rata-rata y akan meningkat sebanyak 2.243073 unit.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.