library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'ggplot2' was built under R version 4.3.2
## Warning: package 'readr' was built under R version 4.3.2
## Warning: package 'dplyr' was built under R version 4.3.2
## Warning: package 'forcats' was built under R version 4.3.2
## Warning: package 'lubridate' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read.csv("C:/Users/RAKESHA/Downloads/data liver.csv", sep=";")
y<-data$Y
x1<-data$X1
x2<-data$X2
x3<-data$X3
x4<-data$X4
x5<-data$X5
x6<-data$X6
data<-data.frame(cbind(y,x1,x2,x3,x4,x5,x6))
head(data)
## y x1 x2 x3 x4 x5 x6
## 1 158.76 16.36 8.90 3.47 6.02 57.42 1.11
## 2 197.19 26.68 21.22 3.53 12.07 61.38 1.36
## 3 144.73 12.49 16.62 2.00 8.88 67.42 1.47
## 4 140.06 8.45 22.86 6.71 7.46 69.94 1.31
## 5 129.71 10.19 14.23 4.75 2.06 65.68 1.25
## 6 162.59 19.53 17.35 1.95 7.54 59.63 1.14
n<-nrow(data)
n
## [1] 36
p<-ncol(data)
p
## [1] 7
#EXPLORASI DATA
plot(x5,y, main="Scatter Plot x5 & y",
xlab="Variabel X5",
ylab="Variabel Y",
pch=16, col="red")
abline(lm(y ~ x4), col="green")
Korelasi antara peubah x5 dan y adalah linear negatif dimana artinya
semakin besar nilai peubah x5 maka semakin kecil nilai peubah y
##PERBANDINGAN DATA x1, x5, DAN Y
boxplot(x1, x5, y, xaxt = "n",
col = c("light blue", "blue", "cyan"))
axis(1, at = 1:3, labels = c("x1", "x5","y"))
summary(x1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.550 8.502 12.265 14.680 19.810 35.410
summary(x5)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 32.74 52.76 58.13 58.33 65.66 79.09
summary(y)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 120.9 143.9 160.7 169.7 191.8 247.4
#Pembentukan model tanpa fungsi bawaan (manual) ## Parameter Regresi
b1<-(sum(x5*y)-sum(x5)*sum(y)/n)/(sum(x5^2)-(sum(x5)^2/n))
b0<-mean(y)-b1*mean(x5)
##Koefisien Determinasi dan penyesuaiannya
r<-(sum(x5*y)-sum(x5)*sum(y)/n)/
sqrt((sum(x5^2)-(sum(x5)^2/n))*(sum(y^2)-(sum(y)^2/n)))
Koef_det<-r^2
Koef_det
## [1] 0.5407857
Adj_R2<-1-((1-Koef_det)*(n-1)/(n-1-1))
Adj_R2
## [1] 0.5272794
galat<-y-(b0+b1*x5)
ragam_galat<-sum(galat^2)/(n-2)
se_b1<-sqrt(ragam_galat/sum((x1-mean(x5))^2))
se_b1
## [1] 0.08520913
se_b0<-sqrt(ragam_galat*(1/n+mean(x5)^2/sum((x5-mean(x5))^2)))
se_b0
## [1] 20.47648
##Signifikansi Parameter (nilai-t)
t_b0<-b0/se_b0
t_b0
## [1] 14.5083
t_b1<-b1/se_b1
t_b1
## [1] -25.62497
2*pt(-abs(t_b0 ),df<-n-2)
## [1] 3.965296e-16
2*pt(-abs(t_b1 ),df<-n-2)
## [1] 8.151134e-24
##Ukuran Keragaman
galat<-y-(b0+b1*x5)
JKG <- sum((y - (b0+b1*x5))^2)
JKReg <- sum(((b0+b1*x5)- mean(y))^2)
JKT <- sum((y - mean(y))^2)
JKT <- JKReg+JKG
dbReg<-1
dbg<-n-2
dbt<-n-1
Fhit<-(JKReg/dbReg)/(JKG/dbg)
Fhit
## [1] 40.03951
P.value<-1-pf(Fhit, dbReg, dbg, lower.tail <- F)
P.value
## [1] 3.243599e-07
#Pembentukan model dengan fungsi lm
model<-lm(y~x5,data<-data)
summary(model)
##
## Call:
## lm(formula = y ~ x5, data = data <- data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.804 -12.618 -4.058 9.055 63.339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 297.0789 20.4765 14.508 3.97e-16 ***
## x5 -2.1835 0.3451 -6.328 3.24e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.62 on 34 degrees of freedom
## Multiple R-squared: 0.5408, Adjusted R-squared: 0.5273
## F-statistic: 40.04 on 1 and 34 DF, p-value: 3.244e-07
anova(model)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x5 1 20494 20494.3 40.039 3.244e-07 ***
## Residuals 34 17403 511.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ŷ = 297.0789 - 2.1835x
Dapat di interpretasikan bahwa setiap kenaikan x5 satu-satuan mengakibatkan pengurangan bertambah sebesar 2.1835 kali lipat untuk y dugaan pengamatan.Nilai 297.0789 adalah nilai y ketika x sama dengan nol (intersep sumbu y)jika x = 0 masuk dalam selang pengamatan. Dengan demikian, persamaan tersebut memberikan hubungan linear antara variabel x dan y dengan kemiringan negatif, yang berarti ada hubungan yang terbalik antara kedua variabel tersebut.